Singularities of normal quartic surfaces II (char=2)

被引:0
作者
Catanese, Fabrizio [1 ,2 ]
Schuett, Matthias [3 ,4 ]
机构
[1] Univ Bayreuth, Lehrstuhl Math 8, Math Inst, NW 2,Univ Str 30, D-95447 Bayreuth, Germany
[2] Korea Inst Adv Study, Hoegiro 87, Seoul 133722, South Korea
[3] Leibniz Univ Hannover, Inst Algebra Geometrie, Welfengarten 1, D-30167 Hannover, Germany
[4] Leibniz Univ Hannover, Riemann Ctr Geometry & Phys, Appelstr 2, D-30167 Hannover, Germany
关键词
Quartic surface; singularity; Gauss map; genus one fibration; supersingular K3 surface; K3; SURFACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show, in this second part, that the maximal number of singular points of a normal quartic surface X subset of P-K(3) defined over an algebraically closed field K of characteristic 2 is at most 14, and that, if we have 14 singularities, these are nodes and moreover the minimal resolution of X is a supersingular K3 surface. We produce an irreducible component, of dimension 24, of the variety of quartics with 14 nodes. We also exhibit easy examples of quartics with 7 A(3)-singularities.
引用
收藏
页码:1379 / 1420
页数:42
相关论文
共 28 条
[21]   AT MOST 64 LINES ON SMOOTH QUARTIC SURFACES (CHARACTERISTIC 2) [J].
Rams, Slawomir ;
Schuett, Matthias .
NAGOYA MATHEMATICAL JOURNAL, 2018, 232 :76-95
[22]  
Roczen M., 1996, ALGEBRAIC GEOMETRY S, P375
[23]   SUPERSINGULAR K3 SURFACES OVER FIELDS OF CHARACTERISTIC-2 [J].
RUDAKOV, AN ;
SAFAREVIC, IR .
MATHEMATICS OF THE USSR-IZVESTIYA, 1979, 13 (01) :147-165
[24]   ON THE UNIQUENESS OF ELLIPTIC K3 SURFACES WITH MAXIMAL SINGULAR FIBRE [J].
Schuett, Matthias ;
Schweizer, Andreas .
ANNALES DE L INSTITUT FOURIER, 2013, 63 (02) :689-713
[25]  
Schutt M, 2019, ERGEB MATH, V70, P1, DOI 10.1007/978-981-32-9301-4
[26]  
Shimada I., 2004, Asian J. Math, V8, P531
[27]   KUMMER SURFACES IN CHARACTERISTIC-2 [J].
SHIODA, T .
PROCEEDINGS OF THE JAPAN ACADEMY, 1974, 50 (09) :718-722
[28]   EXAMPLE OF UNIRATIONAL SURFACES IN CHARACTERISTIC [J].
SHIODA, T .
MATHEMATISCHE ANNALEN, 1974, 211 (03) :233-236