Singularities of normal quartic surfaces II (char=2)

被引:0
作者
Catanese, Fabrizio [1 ,2 ]
Schuett, Matthias [3 ,4 ]
机构
[1] Univ Bayreuth, Lehrstuhl Math 8, Math Inst, NW 2,Univ Str 30, D-95447 Bayreuth, Germany
[2] Korea Inst Adv Study, Hoegiro 87, Seoul 133722, South Korea
[3] Leibniz Univ Hannover, Inst Algebra Geometrie, Welfengarten 1, D-30167 Hannover, Germany
[4] Leibniz Univ Hannover, Riemann Ctr Geometry & Phys, Appelstr 2, D-30167 Hannover, Germany
关键词
Quartic surface; singularity; Gauss map; genus one fibration; supersingular K3 surface; K3; SURFACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show, in this second part, that the maximal number of singular points of a normal quartic surface X subset of P-K(3) defined over an algebraically closed field K of characteristic 2 is at most 14, and that, if we have 14 singularities, these are nodes and moreover the minimal resolution of X is a supersingular K3 surface. We produce an irreducible component, of dimension 24, of the variety of quartics with 14 nodes. We also exhibit easy examples of quartics with 7 A(3)-singularities.
引用
收藏
页码:1379 / 1420
页数:42
相关论文
共 28 条
[1]  
[Anonymous], 1974, J INDIAN MATH SOC
[2]  
[Anonymous], 1972, Modular Functions of One Variable, IV
[3]  
[Anonymous], 1980, A Scrapbook of Complex Curve Theory
[4]  
ARTIN M, 1974, ANN SCI ECOLE NORM S, V7, P543
[5]   ON ISOLATED RATIONAL SINGULARITIES OF SURFACES [J].
ARTIN, M .
AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (01) :129-&
[6]  
Artin M., 1977, COMPLEX ANAL ALGEBRA, P11
[7]  
Bombieri E., 1977, Complex analysis and algebraic geometry, P23
[8]  
Catanese F, 2021, Arxiv, DOI arXiv:2106.06643
[9]   Singularities of Normal Quartic Surfaces I (char=2) [J].
Catanese, Fabrizio .
VIETNAM JOURNAL OF MATHEMATICS, 2022, 50 (03) :781-806
[10]  
Cossec F. R., 1989, Progress in Mathematics, V76