Simple MAP decoding of first-order Reed-Muller and hamming codes

被引:41
作者
Ashikhmin, A [1 ]
Litsyn, S
机构
[1] Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
[2] Tel Aviv Univ, Dept Elect Engn Syst, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Hamming codes; maximum a posteriori (MAP) decoding; Reed-Muller codes;
D O I
10.1109/TIT.2004.831835
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A maximum a posteriori (MAP) probability decoder of a block code minimizes the probability of error for each transmitted symbol separately. The standard way of implementing MAP decoding of a linear code is the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm, which is based on a trellis representation of the code. The complexity of the BCJR algorithm for the first-order Reed-Muller (RM-1) codes and Hamming codes is proportional to n(2), where n is the code's length. In this correspondence, we present new MAP decoding algorithms for binary and nonbinary RM-1 and Hamming codes. The proposed algorithms have complexities proportional to q(2)n log(q) n, where q is the alphabet size. In particular, for the binary codes this yields complexity of order n log n.
引用
收藏
页码:1812 / 1818
页数:7
相关论文
共 50 条
  • [31] Minimal codewords in Reed-Muller codes
    Schillewaert, J.
    Storme, L.
    Thas, J. A.
    DESIGNS CODES AND CRYPTOGRAPHY, 2010, 54 (03) : 273 - 286
  • [32] Spherically Punctured Reed-Muller Codes
    Dumer, Ilya
    Kapralova, Olga
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (05) : 2773 - 2780
  • [33] The Treewidth of MDS and Reed-Muller Codes
    Kashyap, Navin
    Thangaraj, Andrew
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (07) : 4837 - 4847
  • [34] Optimal Testing of Reed-Muller Codes
    Bhattacharyya, Arnab
    Kopparty, Swastik
    Schoenebeck, Grant
    Sudan, Madhu
    Zuckerman, David
    2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 488 - 497
  • [35] Holes in Generalized Reed-Muller Codes
    Lovett, Shachar
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (06) : 2583 - 2586
  • [36] Extractors from Reed-Muller codes
    Ta-Shma, Amnon
    Zuckerman, David
    Safra, Shmuel
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2006, 72 (05) : 786 - 812
  • [37] Quaternary Quantum Reed-Muller Codes
    Yuan, Li
    2016 3RD INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2016, : 1170 - 1174
  • [38] Reed-Muller Codes: Theory and Algorithms
    Abbe, Emmanuel
    Shpilka, Amir
    Ye, Min
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (06) : 3251 - 3277
  • [39] Construction of Additive Reed-Muller Codes
    Pujol, J.
    Rifa, J.
    Ronquillo, L.
    APPLIED ALGEBRA, ALGEBRAIC ALGORITHMS, AND ERROR-CORRECTING CODES, 2009, 5527 : 223 - 226
  • [40] On the stopping redundancy of Reed-Muller codes
    Etzion, Tuvi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (11) : 4867 - 4879