Simple MAP decoding of first-order Reed-Muller and hamming codes

被引:41
作者
Ashikhmin, A [1 ]
Litsyn, S
机构
[1] Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
[2] Tel Aviv Univ, Dept Elect Engn Syst, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Hamming codes; maximum a posteriori (MAP) decoding; Reed-Muller codes;
D O I
10.1109/TIT.2004.831835
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A maximum a posteriori (MAP) probability decoder of a block code minimizes the probability of error for each transmitted symbol separately. The standard way of implementing MAP decoding of a linear code is the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm, which is based on a trellis representation of the code. The complexity of the BCJR algorithm for the first-order Reed-Muller (RM-1) codes and Hamming codes is proportional to n(2), where n is the code's length. In this correspondence, we present new MAP decoding algorithms for binary and nonbinary RM-1 and Hamming codes. The proposed algorithms have complexities proportional to q(2)n log(q) n, where q is the alphabet size. In particular, for the binary codes this yields complexity of order n log n.
引用
收藏
页码:1812 / 1818
页数:7
相关论文
共 50 条
  • [21] Efficient erasure list-decoding of Reed-Muller codes
    Gaborit, Philippe
    Ruatta, Olivier
    2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 148 - +
  • [22] Successive Cancellation List Decoding of Product Codes With Reed-Muller Component Codes
    Coskun, Mustafa Cemil
    Jerkovits, Thomas
    Liva, Gianluigi
    IEEE COMMUNICATIONS LETTERS, 2019, 23 (11) : 1972 - 1976
  • [23] PROJECTIVE REED-MULLER CODES
    SORENSEN, AB
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1991, 37 (06) : 1567 - 1576
  • [24] Reed-Muller codes polarize
    Abbe, Emmanuel
    Ye, Min
    2019 IEEE 60TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS 2019), 2019, : 273 - 286
  • [25] Reed-Muller Codes Polarize
    Abbe, Emmanuel
    Ye, Min
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (12) : 7311 - 7332
  • [26] Weight Distribution and List-Decoding Size of Reed-Muller Codes
    Kaufman, Tali
    Lovett, Shachar
    Porat, Ely
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (05) : 2689 - 2696
  • [27] The List Decoding Radius for Reed-Muller Codes Over Small Fields
    Bhowmick, Abhishek
    Lovett, Shachar
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (06) : 4382 - 4391
  • [28] Decoding Reed-Muller and Polar Codes by Successive Factor Graph Permutations
    Hashemi, Seyyed Ali
    Doan, Nghia
    Mondelli, Marco
    Gross, Warren J.
    PROCEEDINGS OF 2018 IEEE 10TH INTERNATIONAL SYMPOSIUM ON TURBO CODES & ITERATIVE INFORMATION PROCESSING (ISTC), 2018,
  • [29] Information Sets From Defining Sets for Reed-Muller Codes of First and Second Order
    Joaquin Bernal, Jose
    Simon Pinero, Juan Jacobo
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) : 6484 - 6497
  • [30] On the weight distribution of second order Reed-Muller codes and their relatives
    Li, Shuxing
    DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (10) : 2447 - 2460