Simple MAP decoding of first-order Reed-Muller and hamming codes

被引:41
作者
Ashikhmin, A [1 ]
Litsyn, S
机构
[1] Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
[2] Tel Aviv Univ, Dept Elect Engn Syst, IL-69978 Tel Aviv, Israel
基金
以色列科学基金会;
关键词
Hamming codes; maximum a posteriori (MAP) decoding; Reed-Muller codes;
D O I
10.1109/TIT.2004.831835
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A maximum a posteriori (MAP) probability decoder of a block code minimizes the probability of error for each transmitted symbol separately. The standard way of implementing MAP decoding of a linear code is the Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm, which is based on a trellis representation of the code. The complexity of the BCJR algorithm for the first-order Reed-Muller (RM-1) codes and Hamming codes is proportional to n(2), where n is the code's length. In this correspondence, we present new MAP decoding algorithms for binary and nonbinary RM-1 and Hamming codes. The proposed algorithms have complexities proportional to q(2)n log(q) n, where q is the alphabet size. In particular, for the binary codes this yields complexity of order n log n.
引用
收藏
页码:1812 / 1818
页数:7
相关论文
共 50 条
  • [1] Partial permutation decoding for the first-order Reed-Muller codes
    Seneviratne, P.
    DISCRETE MATHEMATICS, 2009, 309 (08) : 1967 - 1970
  • [2] Permutation decoding of first-order Generalized Reed-Muller codes
    Bernal, Jose Joaquin
    Simon, Juan Jacobo
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025,
  • [3] Simple maximum-likelihood decoding of generalized first-order Reed-Muller codes
    Schmidt, KU
    Finger, A
    IEEE COMMUNICATIONS LETTERS, 2005, 9 (10) : 912 - 914
  • [4] On the norm and covering radius of the first-order Reed-Muller codes
    Hou, XD
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (03) : 1025 - 1027
  • [5] Fast decoding of non-binary first order Reed-Muller codes
    Ashikhmin, AE
    Litsyn, SN
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1996, 7 (04) : 299 - 308
  • [6] A hybrid decoding of Reed-Muller codes
    Li, Shuang
    Zhang, Shicheng
    Chen, Zhenxing
    Kang, Seog Geun
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2017, 13 (02):
  • [7] Adaptive Viterbi Decoding of Reed-Muller Codes
    Mahran, Ashraf M.
    Magdy, Ahmed
    Elghandour, Ahmed
    2017 12TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND SYSTEMS (ICCES), 2017, : 314 - 319
  • [8] Automorphism Ensemble Decoding of Reed-Muller Codes
    Geiselhart, Marvin
    Elkelesh, Ahmed
    Ebada, Moustafa
    Cammerer, Sebastian
    ten Brink, Stephan
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (10) : 6424 - 6438
  • [9] Decoding Reed-Muller Codes Over Product Sets
    Kim, John Y.
    Kopparty, Swastik
    31ST CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC 2016), 2016, 50
  • [10] Decoding Reed-Muller Codes over Product Sets
    Kim, John Y.
    Kopparty, Swastik
    THEORY OF COMPUTING, 2017, 13