Integrable and superintegrable quantum systems in a magnetic field

被引:53
作者
Bérubé, J
Winternitz, P
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[2] Univ Montreal, Ctr Rech Math, Montreal, PQ H3C 3J7, Canada
关键词
D O I
10.1063/1.1695447
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Integrable quantum mechanical systems with magnetic fields are constructed in two-dimensional Euclidean space. The integral of motion is assumed to be a first or second order Hermitian operator. Contrary to the case of purely scalar potentials, quadratic integrability does not imply the separation of variables in the Schrodinger equation. Moreover, quantum and classical integrable systems do not necessarily coincide: the Hamiltonian can depend on the Planck constant h in a nontrivial manner. (C) 2004 American Institute of Physics.
引用
收藏
页码:1959 / 1973
页数:15
相关论文
共 20 条
[1]  
BERUBE J, 2003, MEMOIRE U MONTREAL
[2]   INTEGRABLE HAMILTONIAN-SYSTEMS WITH VELOCITY-DEPENDENT POTENTIALS [J].
DORIZZI, B ;
GRAMMATICOS, B ;
RAMANI, A ;
WINTERNITZ, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1985, 26 (12) :3070-3079
[3]   SUPERINTEGRABILITY IN CLASSICAL MECHANICS [J].
EVANS, NW .
PHYSICAL REVIEW A, 1990, 41 (10) :5666-5676
[4]   GROUP-THEORY OF THE SMORODINSKY-WINTERNITZ SYSTEM [J].
EVANS, NW .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (12) :3369-3375
[5]   ON HIGHER SYMMETRIES IN QUANTUM MECHANICS [J].
FRIS, J ;
MANDROSOV, V ;
SMORODINSKY, YA ;
UHLIR, M ;
WINTERNITZ, P .
PHYSICS LETTERS, 1965, 16 (03) :354-+
[6]   Hamiltonians separable in Cartesian coordinates and third-order integrals of motion [J].
Gravel, S .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (03) :1003-1019
[7]   Superintegrability with third-order integrals in quantum and classical mechanics [J].
Gravel, S ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (12) :5902-5912
[8]   CLASSICAL VERSUS QUANTUM INTEGRABILITY [J].
HIETARINTA, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1984, 25 (06) :1833-1840
[9]   Pure quantum integrability [J].
Hietarinta, J .
PHYSICS LETTERS A, 1998, 246 (1-2) :97-104
[10]   Superintegrability in three-dimensional Euclidean space [J].
Kalnins, EG ;
Williams, GC ;
Miller, W ;
Pogosyan, GS .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (02) :708-725