Nonlocal Fordy-Kulish equations on symmetric spaces

被引:32
作者
Gurses, Metin [1 ]
机构
[1] Bilkent Univ, Fac Sci, Dept Math, TR-06800 Ankara, Turkey
关键词
Nonlinear Schrodinger equations; Fordy-Kulish system; Nonlocal integrable equations; NONLINEAR SCHRODINGER-EQUATION;
D O I
10.1016/j.physleta.2017.03.051
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
present nonlocal integrable reductions of the Fordy-Kulish system of nonlinear Schrodinger equations and the Fordy system of derivative nonlinear Schrodinger equations on Hermitian symmetric spaces. Examples are given on the symmetric space su(4)/SU(2)XSU(2). (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:1791 / 1794
页数:4
相关论文
共 16 条
[1]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[2]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[3]  
Ablowitz Mark J., 2016, STUD APPL MATH
[4]   Integrable multidimensional versions of the nonlocal nonlinear Schrodinger equation [J].
Fokas, A. S. .
NONLINEARITY, 2016, 29 (02) :319-324
[5]   NON-LINEAR SCHRODINGER-EQUATIONS AND SIMPLE LIE-ALGEBRAS [J].
FORDY, AP ;
KULISH, PP .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 89 (03) :427-443
[6]  
FORDY AP, 1984, J PHYS A-MATH GEN, V17, P1235, DOI 10.1088/0305-4470/17/6/019
[7]   The N-wave equations with PT symmetry [J].
Gerdjikov, V. S. ;
Grahovski, G. G. ;
Ivanov, R. I. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 188 (03) :1305-1321
[8]  
Gerdjikov V.S., ARXIV170303705
[9]  
Gerdjikov V.S., 2016, MATH MODELL IN PRESS
[10]  
Gerdjikov V.S., ARXIV151000480NLINSI