Examining the Solid Electrolyte Interphase on Binder-Free Graphite Electrodes

被引:149
作者
Xiao, Ang [1 ]
Yang, Li [1 ]
Lucht, Brett L. [1 ]
Kang, Sun-Ho [2 ]
Abraham, Daniel P. [2 ]
机构
[1] Univ Rhode Isl, Dept Chem, Kingston, RI 02881 USA
[2] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
关键词
electrochemical electrodes; electrophoresis; graphite; infrared spectra; secondary cells; solid electrolytes; thermal analysis; X-ray photoelectron spectra; SURFACE-FILM FORMATION; LI-ION BATTERIES; LITHIUM SALT; ELECTROCHEMICAL REDUCTION; NATURAL GRAPHITE; LIBOB; PERFORMANCE; ETHYLENE; ANODES; INTERFACE;
D O I
10.1149/1.3078020
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The solid electrode interphase (SEI) on graphite electrodes is important to the performance, calendar life, and safety characteristics of lithium-ion cells. This article examines the SEI formed on binder-free graphite electrodes prepared by electrophoretic deposition. X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis data were obtained on electrodes cycled in cells containing four electrolytes comprising ethylene carbonate: ethylmethyl carbonate (3:7 by weight) solvent and 1.2 M LiPF6, 1 M LiF2BC2O4, 1 M LiBF4, or 0.7 M LiB(C2O4)(2) salt. Our observations suggest that, in addition to solvent reduction, the reduction of electrolyte salts plays an important role in SEI formation. Mechanisms to account for the formation of these SEI constituents are included in the article.
引用
收藏
页码:A318 / A327
页数:10
相关论文
共 44 条
[1]   Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells [J].
Abraham, D. P. ;
Furczon, M. M. ;
Kang, S. -H. ;
Dees, D. W. ;
Jansen, A. N. .
JOURNAL OF POWER SOURCES, 2008, 180 (01) :612-620
[2]   The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes [J].
Andersson, AM ;
Herstedt, M ;
Bishop, AG ;
Edström, K .
ELECTROCHIMICA ACTA, 2002, 47 (12) :1885-1898
[3]   Chemical composition and morphology of the elevated temperature SEI on graphite [J].
Andersson, AM ;
Edström, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (10) :A1100-A1109
[4]  
ANDERSSON AM, 2001, THESIS UPPSALA U SWE
[5]   A comparative study of synthetic graphite and Li electrodes in electrolyte solutions based on ethylene carbonate dimethyl carbonate mixtures [J].
Aurbach, D ;
Markovsky, B ;
Shechter, A ;
EinEli, Y ;
Cohen, H .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (12) :3809-3820
[6]   Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries [J].
Aurbach, D .
JOURNAL OF POWER SOURCES, 2000, 89 (02) :206-218
[7]   On the use of vinylene carbonate (VC) electrolyte solutions for Li-ion as an additive to batteries [J].
Aurbach, D ;
Gamolsky, K ;
Markovsky, B ;
Gofer, Y ;
Schmidt, M ;
Heider, U .
ELECTROCHIMICA ACTA, 2002, 47 (09) :1423-1439
[8]   A study of highly oriented pyrolytic graphite as a model for the graphite anode in Li-ion batteries [J].
Bar-Tow, D ;
Peled, E ;
Burstein, L .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (03) :824-832
[9]   Thermal decomposition of LiPF6-based electrolytes for lithium-ion batteries [J].
Campion, CL ;
Li, WT ;
Lucht, BL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (12) :A2327-A2334
[10]   Lithium difluoro(oxalato)borate as salt for lithium-ion batteries [J].
Chen, Zonghai ;
Liu, J. ;
Amine, K. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (03) :A45-A47