Spatiotemporal Pattern Recognition and Nonlinear PCA for Global Horizontal Irradiance Forecasting

被引:18
作者
Licciardi, G. A. [1 ]
Dambreville, R. [1 ,2 ]
Chanussot, J. [1 ,3 ]
Dubost, Stephanie [2 ]
机构
[1] Grenoble Inst Technol, GIPSA Lab, F-38402 St Martin Dheres, France
[2] EDF R&D, F-78401 Chatou, France
[3] Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland
关键词
Neural networks (NNs); nonlinear principal components analysis (NLPCA); solar irradiation forecast; AUTOASSOCIATIVE NEURAL-NETWORKS; SOLAR-RADIATION; SERIES; MODEL;
D O I
10.1109/LGRS.2014.2335817
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter presents a novel technique for the forecast of the ground horizontal irradiance (GHI) from satellite-based images. To enhance the forecast accuracy, spatial information in addition to temporal information has been considered. This produced an increase in the computational load of the forecast process. Dimensionality reduction techniques based on nonlinear principal component analysis (PCA) are used to project the original data set into low-dimension feature space. A multilayer feedforward neural network classifier is used to model the signal through a training operation involving past history of the considered spatiotemporal signal. Experiments have been carried out on two different data sets. Comparisons with classical forecasting techniques demonstrate that the introduction of the spatial information permits to obtain better short-term forecast measurements for all types of sky conditions. Moreover, further analysis demonstrates that, compared with linear PCA, the nonlinear PCA is more appropriate for dimensionality reduction of spatiotemporal GHI data set.
引用
收藏
页码:284 / 288
页数:5
相关论文
共 17 条
  • [1] [Anonymous], 2003, P SPIE IMAGE SIGNAL
  • [2] Online short-term solar power forecasting
    Bacher, Peder
    Madsen, Henrik
    Nielsen, Henrik Aalborg
    [J]. SOLAR ENERGY, 2009, 83 (10) : 1772 - 1783
  • [3] Bishop CM, 1995, Neural Networks for Pattern Recognition
  • [4] The HelioClim Project: Surface Solar Irradiance Data for Climate Applications
    Blanc, Philippe
    Gschwind, Benoit
    Lefevre, Mireille
    Wald, Lucien
    [J]. REMOTE SENSING, 2011, 3 (02) : 343 - 361
  • [5] A METHOD FOR THE DETERMINATION OF THE GLOBAL SOLAR-RADIATION FROM METEOROLOGICAL SATELLITE DATA
    CANO, D
    MONGET, JM
    ALBUISSON, M
    GUILLARD, H
    REGAS, N
    WALD, L
    [J]. SOLAR ENERGY, 1986, 37 (01) : 31 - 39
  • [6] RECURRENT NEURAL NETWORKS AND ROBUST TIME-SERIES PREDICTION
    CONNOR, JT
    MARTIN, RD
    ATLAS, LE
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (02): : 240 - 254
  • [7] ON MEAN ACCURACY OF STATISTICAL PATTERN RECOGNIZERS
    HUGHES, GF
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1968, 14 (01) : 55 - +
  • [8] NONLINEAR PRINCIPAL COMPONENT ANALYSIS USING AUTOASSOCIATIVE NEURAL NETWORKS
    KRAMER, MA
    [J]. AICHE JOURNAL, 1991, 37 (02) : 233 - 243
  • [9] FEATURE REDUCTION OF HYPERSPECTRAL DATA USING AUTOASSOCIATIVE NEURAL NETWORKS ALGORITHMS
    Licciardi, G.
    Del Frate, F.
    Duca, R.
    [J]. 2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 176 - +
  • [10] Pixel Unmixing in Hyperspectral Data by Means of Neural Networks
    Licciardi, Giorgio A.
    Del Frate, Fabio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (11): : 4163 - 4172