Enhancement of laser-driven electron acceleration in an ion channel

被引:64
作者
Arefiev, Alexey V. [1 ]
Khudik, Vladimir N. [1 ]
Schollmeier, Marius [2 ]
机构
[1] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA
[2] Sandia Natl Labs, Albuquerque, NM 87185 USA
关键词
GENERATION; PULSES;
D O I
10.1063/1.4867491
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A laser beam with duration longer than the period of plasma oscillations propagating through an underdense plasma produces a steady-state positively charged channel in the electron density. We consider a test electron in the two-dimensional plane channel under the combined action of the laser field and the transverse static electric field of the channel. At ultrarelativistic laser wave amplitude (a >> 1), the electron is pushed primarily forward. As the electron gradually dephases from the wave, the field it samples and its relativistic gamma-factor strongly oscillate. The natural frequency of electron oscillations across the channel (betatron frequency) depends on gamma, which couples the betatron oscillations to the longitudinal motion induced by the wave. We show that the modulation of the natural frequency makes the oscillations unstable. The resulting amplification of the oscillations across the channel reduces the axial dephasing between the electron and the wave, leading to a considerable electron energy enhancement well above the ponderomotive energy. We find that there is a well-pronounced laser amplitude threshold a(*), above which the enhancement takes place, that scales as a(*) alpha 1/root n(0), where n(0) is the ion density. The presented mechanism of energy enhancement is robust with respect to a longitudinal variation of the density, because it relies on a threshold phenomenon rather than on a narrow linear resonance. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:13
相关论文
共 31 条
[1]  
AREFIEV AV, 2012, PHYS REV SPEC TOP-AC, V15
[2]   New insights into the laser produced electron-positron pairs [J].
Chen, Hui ;
Nakai, M. ;
Sentoku, Y. ;
Arikawa, Y. ;
Azechi, H. ;
Fujioka, S. ;
Keane, C. ;
Kojima, S. ;
Goldstein, W. ;
Maddox, B. R. ;
Miyanaga, N. ;
Morita, T. ;
Nagai, T. ;
Nishimura, H. ;
Ozaki, T. ;
Park, J. ;
Sakawa, Y. ;
Takabe, H. ;
Williams, G. ;
Zhang, Z. .
NEW JOURNAL OF PHYSICS, 2013, 15
[3]  
Cipiccia S, 2011, NAT PHYS, V7, P867, DOI [10.1038/NPHYS2090, 10.1038/nphys2090]
[4]  
*COMM HIGH EN DENS, 2003, FRONT HIGH EN DENS P
[5]   Physics of laser-driven plasma-based electron accelerators [J].
Esarey, E. ;
Schroeder, C. B. ;
Leemans, W. P. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (03) :1229-1285
[6]   Omega EP, Laser Scalings and the 60 MeV Barrier: First Observations of Ion Acceleration Performance in the 10 Picosecond Kilojoule Short-Pulse Regime [J].
Flippo, Kirk ;
Bartal, Teresa ;
Beg, Farhat ;
Chawla, Sugreev ;
Cobble, Jim ;
Gaillard, Sandrine ;
Hey, Daniel ;
MacKinnon, Andrew ;
MacPhee, Andrew ;
Nilson, Phillip ;
Offermann, Dustin ;
Le Pape, Sebastien ;
Schmitt, Mark J. .
SIXTH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS, PARTS 1-4, 2010, 244
[7]   Channeling dynamics of relativistic-intensity laser pulses [J].
Friou, A. ;
Lefebvre, E. ;
Gremillet, L. .
PHYSICS OF PLASMAS, 2012, 19 (02)
[8]   Laser-driven proton scaling laws and new paths towards energy increase [J].
Fuchs, J ;
Antici, P ;
D'Humières, E ;
Lefebvre, E ;
Borghesi, M ;
Brambrink, E ;
Cecchetti, CA ;
Kaluza, M ;
Malka, V ;
Manclossi, M ;
Meyroneinc, S ;
Mora, P ;
Schreiber, J ;
Toncian, T ;
Pépin, H ;
Audebert, R .
NATURE PHYSICS, 2006, 2 (01) :48-54
[9]   Multi-MeV electron beam generation by direct laser acceleration in high-density plasma channels [J].
Gahn, C ;
Tsakiris, GD ;
Pukhov, A ;
Meyer-ter-Vehn, J ;
Pretzler, G ;
Thirolf, P ;
Habs, D ;
Witte, KJ .
PHYSICAL REVIEW LETTERS, 1999, 83 (23) :4772-4775
[10]   Generation of MeV electrons and positrons with femtosecond pulses from a table-top laser system [J].
Gahn, C ;
Tsakiris, GD ;
Pretzler, G ;
Witte, KJ ;
Thirolf, P ;
Habs, D ;
Delfin, C ;
Wahlström, CG .
PHYSICS OF PLASMAS, 2002, 9 (03) :987-999