Deformed relativistic and nonrelativistic symmetries on canonical noncommutative spaces

被引:12
作者
Banerjee, Rabin [1 ]
Kumar, Kuldeep
机构
[1] SN Bose Natl Ctr Basic Sci, JD Block,Sector 3, Kolkata 700098, India
[2] Panjab Univ, Dept Phys, Chandigarh 160014, India
关键词
D O I
10.1103/PhysRevD.75.045008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the general deformed conformal-Poincare (Galilean) symmetries consistent with relativistic (nonrelativistic) canonical noncommutative spaces. In either case we obtain deformed generators, containing arbitrary free parameters, which close to yield new algebraic structures. We show that a particular choice of these parameters reproduces the undeformed algebra. The modified coproduct rules and the associated Hopf algebra are also obtained. Finally, we show that for the choice of parameters leading to the undeformed algebra, the deformations are represented by twist functions.
引用
收藏
页数:5
相关论文
共 24 条
[1]   A gravity theory on noncommultative spaces [J].
Aschieri, P ;
Blohmann, C ;
Dimitrijevi, M ;
Meyer, F ;
Schupp, P ;
Wess, J .
CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (17) :3511-3532
[2]   Deformed conformal and super-Poincare symmetries in the non- (anti-) commutative spaces [J].
Banerjee, R. ;
Lee, C. ;
Siwach, S. .
EUROPEAN PHYSICAL JOURNAL C, 2006, 48 (01) :305-313
[3]   Deformed Schrodinger symmetry on noncommutative space [J].
Banerjee, R. .
EUROPEAN PHYSICAL JOURNAL C, 2006, 47 (02) :541-545
[4]   Noncommutative gauge theories and Lorentz symmetry [J].
Banerjee, R ;
Chakraborty, B ;
Kumar, K .
PHYSICAL REVIEW D, 2004, 70 (12) :125004-1
[5]   Deformed symmetry in Snyder space and relativistic particle dynamics [J].
Banerjee, Rabin ;
Kulkarni, Shailesh ;
Samanta, Saurav .
JOURNAL OF HIGH ENERGY PHYSICS, 2006, (05)
[6]   MANY-BODY REALIZATION OF SCHRODINGER ALGEBRA [J].
BURDET, G ;
PERRIN, M .
LETTERE AL NUOVO CIMENTO, 1972, 4 (13) :651-&
[7]   Space-time symmetries of noncommutative spaces [J].
Calmet, X .
PHYSICAL REVIEW D, 2005, 71 (08) :1-4
[8]   New concept of relativistic invariance in noncommutative space-time: Twisted poincare symmetry and its implications [J].
Chaichian, M ;
Presnajder, P ;
Tureanu, A .
PHYSICAL REVIEW LETTERS, 2005, 94 (15)
[9]   On a Lorentz-invariant interpretation of noncommutative space-time and its implications on noncommutative QFT [J].
Chaichian, M ;
Kulish, PP ;
Nishijima, K ;
Tureanu, A .
PHYSICS LETTERS B, 2004, 604 (1-2) :98-102
[10]  
DIMITRIJEVIC M, HEPTH0411224