From mouse to man: Understanding heart failure through genetically altered mouse models

被引:29
作者
Chu, GX [1 ]
Haghighi, K [1 ]
Kranias, EG [1 ]
机构
[1] Univ Cincinnati, Coll Med, Dept Pharmacol & Cell Biophys, Cincinnati, OH 45267 USA
关键词
cardiac hypertrophy; heart failure; transgenic; gene targeting; mouse;
D O I
10.1054/jcaf.2002.129284
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Human heart failure, a complex disease with heterogeneous etiologies, remains one of the most life-threatening diseases known. Identification of "candidate genes" and molecular and biochemical mediators of cardiac hypertrophy and failure has been vigorously pursued to dissect the pathogenesis and signaling pathways of this disease. With the availability of murine cardiac-specific promoters, transgenesis and gene targeting technologies have revolutionized the field of cardiac research. During the past decade, a large number of genetically engineered mouse models with altered cardiac function have been generated. The ability to engineer precise mutations in the heart, coupled with the technological sophistication to quantitate the effects of these mutations on cardiac function at cellular, organ and intact animal levels, has provided novel insights into the molecular mechanisms of heart failure and led to the recognition of a wide array of previously unknown molecular sensors, initiators, transducers, and effectors for the development of cardiac hypertrophy and its transition to heart failure.
引用
收藏
页码:S432 / S449
页数:18
相关论文
共 148 条
[1]   Enhanced Gαq signaling:: A common pathway mediates cardiac hypertrophy and apoptotic heart failure [J].
Adams, JW ;
Sakata, Y ;
Davis, MG ;
Sah, VP ;
Wang, YB ;
Liggett, SB ;
Chien, KR ;
Brown, JH ;
Dorn, GW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (17) :10140-10145
[2]   Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy [J].
Akhter, SA ;
Luttrell, LM ;
Rockman, HA ;
Iaccarino, G ;
Lefkowitz, RJ ;
Koch, WJ .
SCIENCE, 1998, 280 (5363) :574-577
[3]   Transgenic mice with cardiac overexpression of alpha(1B)-adrenergic receptors - In vivo alpha(1)-adrenergic receptor-mediated regulation of beta-adrenergic signaling [J].
Akhter, SA ;
Milano, CA ;
Shotwell, KF ;
Cho, MC ;
Rockman, HA ;
Lefkowitz, RJ ;
Koch, WJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (34) :21253-21259
[4]   MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure [J].
Arber, S ;
Hunter, JJ ;
Ross, J ;
Hongo, M ;
Sansig, G ;
Borg, J ;
Perriard, JC ;
Chien, KR ;
Caroni, P .
CELL, 1997, 88 (03) :393-403
[5]   Targeted overexpression of the sarcoplasmic reticulum Ca2+-ATPase increases cardiac contractility in transgenic mouse hearts [J].
Baker, DL ;
Hashimoto, K ;
Grupp, IL ;
Ji, Y ;
Reed, T ;
Loukianov, E ;
Grupp, G ;
Bhagwhat, A ;
Hoit, B ;
Walsh, R ;
Marban, E ;
Periasamy, M .
CIRCULATION RESEARCH, 1998, 83 (12) :1205-1214
[6]   Postnatally induced inactivation of gp130 in mice results in neurological, cardiac, hematopoietic, immunological, hepatic, and pulmonary defects [J].
Betz, UAK ;
Bloch, W ;
van den Broek, M ;
Yoshida, K ;
Taga, T ;
Kishimoto, T ;
Addicks, K ;
Rajewsky, K ;
Müller, W .
JOURNAL OF EXPERIMENTAL MEDICINE, 1998, 188 (10) :1955-1965
[7]  
Blanchard EM, 1997, CIRC RES, V81, P1005
[8]   Functional consequences of integrin gene mutations in mice [J].
Bouvard, D ;
Brakebusch, C ;
Gustafsson, E ;
Aszódi, A ;
Bengtsson, T ;
Berna, A ;
Fässler, R .
CIRCULATION RESEARCH, 2001, 89 (03) :211-223
[9]   Expression of protein kinase C beta in the heart causes hypertrophy in adult mice and sudden death in neonates [J].
Bowman, JC ;
Steinberg, SF ;
Jiang, TR ;
Geenen, DL ;
Fishman, GI ;
Buttrick, PM .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 100 (09) :2189-2195
[10]   Dilated cardiomyopathy in transgenic mice expressing a mutant A subunit of protein phosphatase 2A [J].
Brewis, N ;
Ohst, K ;
Fields, K ;
Rapacciuolo, A ;
Chou, D ;
Bloor, C ;
Dillmann, W ;
Rockman, H ;
Walter, G .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2000, 279 (03) :H1307-H1318