Modeling the influence of microstructure on the stress distributions of corrosion pits

被引:20
作者
Brewick, Patrick T. [1 ]
DeGiorgi, Virginia G. [1 ]
Geltmacher, Andrew B. [1 ]
Qidwai, Siddiq M. [2 ]
机构
[1] US Naval Res Lab, 4555 Overlook Ave SW, Washington, DC 20375 USA
[2] Natl Sci Fdn, Arlington, VA 22230 USA
基金
美国国家科学基金会;
关键词
Pitting corrosion; Computational modeling; Microstructure; Principal stress; Stress intensity factor; PHASE FIELD MODEL; FATIGUE-CRACK INITIATION; PITTING CORROSION; STAINLESS-STEEL; CRYSTALLOGRAPHIC ORIENTATION; COMPUTER-SIMULATION; ELASTIC-CONSTANTS; BEHAVIOR; PROPAGATION; DISSOLUTION;
D O I
10.1016/j.corsci.2019.108111
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work explores how microstructure influences stress distributions around corrosion pits through computational modeling that captures crystallographic orientation dependencies in corrosion potential and mechanical response. Several sites are considered for initial corrosion pits to investigate the resultant variation in pit geometry and stress quantities. Comparisons to a homogeneous, semi-circular model show that microstructure-sensitive cases can have much larger maximum stress magnitudes, but the stress intensity factors from the homogeneous case are quite congruous to those from the microstructure-sensitive cases. This study illustrates how microstructure impacts local quantities, whereas global quantities are more consistent and comparable to a fully homogeneous assumption.
引用
收藏
页数:16
相关论文
共 79 条
  • [1] [Anonymous], 2016, FINITE ELEMENT PROCE
  • [2] [Anonymous], 2016, COMS MULT US GUID VE
  • [3] Phase-field model of pitting corrosion kinetics in metallic materials
    Ansari, Talha Qasim
    Xiao, Zhihua
    Hu, Shenyang
    Li, Yulan
    Luo, Jing-Li
    Shi, San-Qiang
    [J]. NPJ COMPUTATIONAL MATERIALS, 2018, 4
  • [4] A study on the stability of AISI 316L stainless steel pitting corrosion through its transfer function
    Bastidas, JM
    Polo, JL
    Torres, CL
    Cano, E
    [J]. CORROSION SCIENCE, 2001, 43 (02) : 269 - 281
  • [5] Modelling of pitting corrosion in marine and offshore steel structures - A technical review
    Bhandari, Jyoti
    Khan, Faisal
    Abbassi, Rouzbeh
    Garaniya, Vikram
    Ojeda, Roberto
    [J]. JOURNAL OF LOSS PREVENTION IN THE PROCESS INDUSTRIES, 2015, 37 : 39 - 62
  • [6] Microstructure-sensitive modeling of pitting corrosion: Effect of the crystallographic orientation
    Brewick, Patrick T.
    Kota, Nithya
    Lewis, Alexis C.
    DeGiorgi, Virginia G.
    Geltmacher, Andrew B.
    Qidwai, Siddiq M.
    [J]. CORROSION SCIENCE, 2017, 129 : 54 - 69
  • [7] Numerical investigation on stress concentration of corrosion pit
    Cerit, M.
    Genel, K.
    Eksi, S.
    [J]. ENGINEERING FAILURE ANALYSIS, 2009, 16 (07) : 2467 - 2472
  • [8] Poly(o-ethylaniline) coatings for stainless steel protection
    Chaudhari, Sudeshna
    Sainkar, S. R.
    Patil, P. P.
    [J]. PROGRESS IN ORGANIC COATINGS, 2007, 58 (01) : 54 - 63
  • [9] Transition from pitting to fatigue crack growth - Modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminum alloy
    Chen, GS
    Wan, KC
    Gao, M
    Wei, RP
    Flournoy, TH
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1996, 219 (1-2): : 126 - 132
  • [10] The Influence of Passive Film Damage on Pitting Corrosion
    Chen, Ziguang
    Zhang, Guangfeng
    Bobaru, Florin
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2016, 163 (02) : C19 - C24