Fourier integral operators on noncompact symmetric spaces of real rank one

被引:44
作者
Ionescu, AD [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
D O I
10.1006/jfan.2000.3572
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X = G/K be a noncompact symmetric space of real rank one. The purpose of this paper is to investigate L-P boundedness properties of a certain class of radial Fourier integral operators on the space X. We will prove that if u(tau) is the solution at some ilxed time tau of the natural wave equation on X with initial data f and g and 1 < p < infinity, then parallel to u(tau)parallel to(Lp(X)) less than or equal to C-p(tau)(parallel to f parallel to(Lhpp(X)) + (1+tau) parallel to g parallel to L-hpp, ((X))). We will obtain both the precise behavior of the norm C-p(tau) and the sharp regularity assumptions on the functions f and g (i.e.. the exponent b(p)) that make this inequality possible. in the second part of the paper we deal with the analog of E. M, Stein's maximal spherical averages and prove exponential decay estimates (of a highly non-euclidean nature) on the L-P norm of sup(T less than or equal to tau less than or equal to T.1) \f*d sigma(tau)(z)\, where d sigma(tau) is a normalized spherical measure. (C) 2000 Academic Press.
引用
收藏
页码:274 / 300
页数:27
相关论文
共 21 条
[1]   MULTIPLICATORS ON CERTAIN SYMMETRICAL SPACES [J].
ANKER, JP ;
LOHOUE, N .
AMERICAN JOURNAL OF MATHEMATICS, 1986, 108 (06) :1303-1354
[2]   LP FOURIER MULTIPLIERS ON RIEMANNIAN SYMMETRICAL SPACES OF THE NONCOMPACT TYPE [J].
ANKER, JP .
ANNALS OF MATHEMATICS, 1990, 132 (03) :597-628
[3]  
[Anonymous], HARMONIC ANAL
[4]   AVERAGES IN THE PLANE OVER CONVEX CURVES AND MAXIMAL OPERATORS [J].
BOURGAIN, J .
JOURNAL D ANALYSE MATHEMATIQUE, 1986, 47 :69-85
[5]  
BRAY WO, 1994, LECT NOTES PURE APPL, V157, P77
[6]   LP-MULTIPLIERS FOR NONCOMPACT SYMMETRIC SPACES [J].
CLERC, JL ;
STEIN, EM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1974, 71 (10) :3911-3912
[7]   L(P)-L(Q) ESTIMATES FOR FUNCTIONS OF THE LAPLACE-BELTRAMI OPERATOR ON NONCOMPACT SYMMETRICAL SPACES .1. [J].
COWLING, M ;
GIULINI, S ;
MEDA, S .
DUKE MATHEMATICAL JOURNAL, 1993, 72 (01) :109-150
[8]  
FEFFERMAN C, 1972, ACTA MATH-UPPSALA, V129, P137, DOI 10.1007/BF02392215
[9]  
GIULINI S, 1990, J REINE ANGEW MATH, V409, P93
[10]  
HELGASON S, 1994, GEOMETRIC ANAL SYMME, DOI DOI 10.1090/SURV/039