On the combinatorial invariance of Kazhdan-Lusztig polynomials

被引:7
作者
Incitti, Federico [1 ]
机构
[1] Inst Mittag Leffler, SE-18260 Djursholm, Sweden
关键词
Coxeter group; symmetric group; Bruhat order; Kazhdan-Lusztig polynomial; combinatorial invariance conjecture;
D O I
10.1016/j.jcta.2005.12.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we solve the conjecture about the combinatorial invariance of Kazhdan-Lusztig polynomials for the first open cases, showing that it is true for intervals of length 5 and 6 in the symmetric group. We also obtain explicit formulas for the R-polynomials and for the Kazhdan-Lusztig polynomials associated with any interval of length 5 in any Coxeter group, showing in particular what they look like in the symmetric group. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:1332 / 1350
页数:19
相关论文
共 10 条
[1]  
BRENTI F, IN PRESS ADV MATH
[2]  
DYER M, 1991, COMPOS MATH, V78, P185
[3]  
DYER MJ, 1993, COMPOS MATH, V89, P91
[4]  
HULTMAN A, 2003, THESIS ROYAL I TECHN
[5]  
Humphreys J. E., 1990, REFLECTION GROUPS CO
[6]  
INCITTI F, IN PRESS ANN COMB
[7]   The singular locus of a Schubert variety [J].
Kassel, C ;
Lascoux, A ;
Reutenauer, C .
JOURNAL OF ALGEBRA, 2003, 269 (01) :74-108
[8]   REPRESENTATIONS OF COXETER GROUPS AND HECKE ALGEBRAS [J].
KAZHDAN, D ;
LUSZTIG, G .
INVENTIONES MATHEMATICAE, 1979, 53 (02) :165-184
[9]  
Stanley R., 1986, ENUMERATIVE COMBINAT, V1
[10]  
[No title captured]