Primary and rechargeable zinc-air batteries using ceramic and highly stable TiCN as an oxygen reduction reaction electrocatalyst

被引:39
|
作者
Anju, V. G. [1 ]
Manjunatha, R. [1 ]
Austeria, P. Muthu [1 ]
Sampath, S. [1 ]
机构
[1] Indian Inst Sci, Dept Inorgan & Phys Chem, Bangalore 560012, Karnataka, India
关键词
PEROVSKITE OXIDE CATALYSTS; TRANSITION-METAL CARBIDES; TITANIUM NITRIDE; CATHODE CATALYSTS; FUEL-CELLS; PERFORMANCE; NITROGEN; ELECTRODE; NANOPARTICLES; GRAPHENE;
D O I
10.1039/c6ta00377j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Primary and secondary zinc-air batteries based on ceramic, stable, one dimensional titanium carbonitride (TiCN) nanostructures are reported. The optimized titanium carbonitride composition by density functional theory reveals their good activity towards the oxygen reduction reaction (ORR). Electrochemical measurements show their superior performance for the ORR in alkaline media coupled with favourable kinetics. The nanostructured TiCN lends itself amenable to be used as an air cathode material in primary and rechargeable zinc-air batteries. The battery performance and cyclability are found to be good. Further, we have demonstrated a gel-based electrolyte for rechargeable zinc-air batteries based on a TiCN cathode under ambient, atmospheric conditions without any oxygen supply from a cylinder. The present cell can work at current densities of 10-20 mA cm(2) (app. 10 000 mA g(-1) of TiCN) for several hours (63 h in the case of 10 mA cm(-2)) with a charge retention of 98%. The low cost, noble metal-free, mechanically stable and corrosion resistant TiCN is a very good alternative to Pt for metal-air battery chemistry.
引用
收藏
页码:5258 / 5264
页数:7
相关论文
共 50 条
  • [1] A Composite Bifunctional Oxygen Electrocatalyst for High-Performance Rechargeable Zinc-Air Batteries
    Liu, Jia-Ning
    Li, Bo-Quan
    Zhao, Chang-Xin
    Yu, Jia
    Zhang, Qiang
    CHEMSUSCHEM, 2020, 13 (06) : 1529 - 1536
  • [2] MnO/N-Doped Mesoporous Carbon as Advanced Oxygen Reduction Reaction Electrocatalyst for Zinc-Air Batteries
    Ding, Jieting
    Ji, Shan
    Wang, Hui
    Brett, Dan J. L.
    Pollet, Bruno G.
    Wang, Rongfang
    CHEMISTRY-A EUROPEAN JOURNAL, 2019, 25 (11) : 2868 - 2876
  • [3] Air cathode of zinc-air batteries: a highly efficient and durable aerogel catalyst for oxygen reduction
    Zhang, Lijie
    Yang, Xianfeng
    Cai, Rongsheng
    Chen, Chengmeng
    Xia, Yanzhi
    Zhang, Huawei
    Yang, Dongjiang
    Yao, Xiangdong
    NANOSCALE, 2019, 11 (03) : 826 - 832
  • [4] Cobalt-Doped Tungsten Sulfides as Stable and Efficient Air Electrodes for Rechargeable Zinc-Air Batteries
    Xu, Ruizhi
    Xu, Zejun
    Zhang, Xinyang
    Ling, Ying
    Li, Min
    Yang, Zehui
    CHEMELECTROCHEM, 2020, 7 (01) : 148 - 154
  • [5] Nonmetallic Nitrogen-Doped MnO2 as Highly Efficient Oxygen Electrocatalyst for Rechargeable Zinc-Air Batteries
    Zhang, Wenlong
    Xie, Shilei
    Wang, Shoushan
    Zhao, Peng
    Yang, Xiaoman
    Huang, Peng
    Liu, Peng
    Cheng, Faliang
    CHEMISTRY-A EUROPEAN JOURNAL, 2023, 29 (19)
  • [6] Highly Active and Durable Nanocrystal-Decorated Bifunctional Electrocatalyst for Rechargeable Zinc-Air Batteries
    Lee, Dong Un
    Park, Moon Gyu
    Park, Hey Woong
    Seo, Min Ho
    Wang, Xiaolei
    Chen, Zhongwei
    CHEMSUSCHEM, 2015, 8 (18) : 3129 - 3138
  • [7] Dual active nitrogen doped hierarchical porous hollow carbon nanospheres as an oxygen reduction electrocatalyst for zinc-air batteries
    Zhu, Jiawei
    Zhou, Huang
    Zhang, Chengtian
    Zhang, Jian
    Mu, Shichun
    NANOSCALE, 2017, 9 (35) : 13257 - 13263
  • [8] Waste to wealth: spent catalyst as an efficient and stable bifunctional oxygen electrocatalyst for zinc-air batteries
    Sathiskumar, Chinnusamy
    Meesala, Lavanya
    Kumar, Pramod
    Rao, B. Ramachandra
    John, Neena S.
    Matte, H. S. S. Ramakrishna
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (05) : 1406 - 1414
  • [9] NiCoFeP Nanofibers as an Efficient Electrocatalyst for Oxygen Evolution Reaction and Zinc-Air Batteries
    Bian, Juanjuan
    Sun, Chunwen
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (06):
  • [10] A bifunctional electrocatalyst α-MnO2-LaNiO3/carbon nanotube composite for rechargeable zinc-air batteries
    Ma, Hongyun
    Wang, Baoguo
    RSC ADVANCES, 2014, 4 (86): : 46084 - 46092