Primary and rechargeable zinc-air batteries using ceramic and highly stable TiCN as an oxygen reduction reaction electrocatalyst

被引:40
作者
Anju, V. G. [1 ]
Manjunatha, R. [1 ]
Austeria, P. Muthu [1 ]
Sampath, S. [1 ]
机构
[1] Indian Inst Sci, Dept Inorgan & Phys Chem, Bangalore 560012, Karnataka, India
关键词
PEROVSKITE OXIDE CATALYSTS; TRANSITION-METAL CARBIDES; TITANIUM NITRIDE; CATHODE CATALYSTS; FUEL-CELLS; PERFORMANCE; NITROGEN; ELECTRODE; NANOPARTICLES; GRAPHENE;
D O I
10.1039/c6ta00377j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Primary and secondary zinc-air batteries based on ceramic, stable, one dimensional titanium carbonitride (TiCN) nanostructures are reported. The optimized titanium carbonitride composition by density functional theory reveals their good activity towards the oxygen reduction reaction (ORR). Electrochemical measurements show their superior performance for the ORR in alkaline media coupled with favourable kinetics. The nanostructured TiCN lends itself amenable to be used as an air cathode material in primary and rechargeable zinc-air batteries. The battery performance and cyclability are found to be good. Further, we have demonstrated a gel-based electrolyte for rechargeable zinc-air batteries based on a TiCN cathode under ambient, atmospheric conditions without any oxygen supply from a cylinder. The present cell can work at current densities of 10-20 mA cm(2) (app. 10 000 mA g(-1) of TiCN) for several hours (63 h in the case of 10 mA cm(-2)) with a charge retention of 98%. The low cost, noble metal-free, mechanically stable and corrosion resistant TiCN is a very good alternative to Pt for metal-air battery chemistry.
引用
收藏
页码:5258 / 5264
页数:7
相关论文
共 65 条
[1]   Kinetic study and modeling of the high temperature CO2 capture by Na2ZrO3 solid absorbent [J].
Barraza Jimenez, Diana ;
Escobedo Bretado, Miguel A. ;
Lardizabal Gutierrez, Daniel ;
Salinas Gutierrez, Jesus M. ;
Lopez Ortiz, Alejandro ;
Collins-Martinez, Virginia .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (05) :2557-2564
[2]   Nano-sized TiN on carbon black as an efficient electrocatalyst for the oxygen reduction reaction prepared using an mpg-C3N4 template [J].
Chen, Jia ;
Takanabe, Kazuhiro ;
Ohnishi, Ryohji ;
Lu, Daling ;
Okada, Saori ;
Hatasawa, Haruna ;
Morioka, Hiroyuki ;
Antonietti, Markus ;
Kubota, Jun ;
Domen, Kazunari .
CHEMICAL COMMUNICATIONS, 2010, 46 (40) :7492-7494
[3]   Enhancing Electrocatalytic Oxygen Reduction on MnO2 with Vacancies [J].
Cheng, Fangyi ;
Zhang, Tianran ;
Zhang, Yi ;
Du, Jing ;
Han, Xiaopeng ;
Chen, Jun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (09) :2474-2477
[4]   Phosphorus-nitrogen dual doped carbon as an effective catalyst for oxygen reduction reaction in acidic media: effects of the amount of P-doping on the physical and electrochemical properties of carbon [J].
Choi, Chang Hyuck ;
Park, Sung Hyeon ;
Woo, Seong Ihl .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (24) :12107-12115
[5]   Work function and Young's modulus of platinum nanotubes: Density functional study [J].
Das, Monoj ;
Mukherjee, Prajna ;
Konar, Shyamal ;
Gupta, Bikash C. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2013, 250 (08) :1519-1525
[6]   Electrocatalyst approaches and challenges for automotive fuel cells [J].
Debe, Mark K. .
NATURE, 2012, 486 (7401) :43-51
[7]   Group VI transition metal carbides as alternatives in the hydrodechlorination of chlorofluorocarbons [J].
Delannoy, L ;
Giraudon, JM ;
Granger, P ;
Leclercq, L ;
Leclercq, G .
CATALYSIS TODAY, 2000, 59 (3-4) :231-240
[8]   Kinetic Study of Oxygen Reduction Reaction on Carbon Supported Pd-Based Nanomaterials in Alkaline Medium [J].
Diabate, D. ;
Napporn, T. W. ;
Servat, K. ;
Habrioux, A. ;
Arrii-Clacens, S. ;
Trokourey, A. ;
Kokoh, K. B. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (06) :H302-H308
[9]  
Dong Y., 2013, CHEMSUSCHEM, V6, P2016
[10]   Co3O4 nanoparticle-modified MnO2 nanotube bifunctional oxygen cathode catalysts for rechargeable zinc-air batteries [J].
Du, Guojun ;
Liu, Xiaogang ;
Zong, Yun ;
Hor, T. S. Andy ;
Yu, Aishui ;
Liu, Zhaolin .
NANOSCALE, 2013, 5 (11) :4657-4661