Ads Manifolds With Particles and Earthquakes on Singular Surfaces

被引:24
作者
Bonsante, Francesco [1 ]
Schlenker, Jean-Marc [2 ]
机构
[1] Univ Pavia, I-27100 Pavia, Italy
[2] Univ Toulouse 3, CNRS, UMR 5219, Inst Math, F-31062 Toulouse 9, France
关键词
Earthquakes; cone singularities; AdS geometry; PRESCRIBING CURVATURE; CONFORMAL METRICS;
D O I
10.1007/s00039-009-0716-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove two related results. The first is an "earthquake theorem" for closed hyperbolic surfaces with cone singularities where the total angle is less than pi: any two such metrics in are connected by a unique left earthquake. The second result is that the space of "globally hyperbolic" AdS manifolds with "particles" - cone singularities (of given angle) along time-like lines - is parametrized by the product of two copies of the Teichmuller space with some marked points (corresponding to the cone singularities). The two statements are proved together.
引用
收藏
页码:41 / 82
页数:42
相关论文
共 21 条
[1]   The cosmological time function [J].
Andersson, L ;
Galloway, GJ ;
Howard, R .
CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (02) :309-322
[2]   Notes on a paper of Mess [J].
Andersson, Lars ;
Barbot, Thierry ;
Benedetti, Riccardo ;
Bonsante, Francesco ;
Goldman, William M. ;
Labourie, Francois ;
Scannell, Kevin P. ;
Schlenker, Jean-Marc .
GEOMETRIAE DEDICATA, 2007, 126 (01) :47-70
[3]   Geometric cone surfaces and (2+1)-gravity coupled to particles [J].
Benedetti, R ;
Guadagnini, E .
NUCLEAR PHYSICS B, 2000, 588 (1-2) :436-450
[4]  
Benedetti R, 2009, MEM AM MATH SOC, V198, P1
[5]   GLOBAL ASPECTS OF CAUCHY PROBLEM IN GENERAL RELATIVITY [J].
CHOQUETBRUHAT, Y ;
GEROCH, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 14 (04) :329-+
[6]   Collars and partitions of hyperbolic cone-surfaces [J].
Dryden, Emily B. ;
Parlier, Hugo .
GEOMETRIAE DEDICATA, 2007, 127 (01) :139-149
[7]  
Fathi A., 1991, ASTERISQUE, V66-67
[8]   PRESCRIBING CURVATURE ON OPEN SURFACES [J].
HULIN, D ;
TROYANOV, M .
MATHEMATISCHE ANNALEN, 1992, 293 (02) :277-315
[9]   THE NIELSEN REALIZATION PROBLEM [J].
KERCKHOFF, SP .
ANNALS OF MATHEMATICS, 1983, 117 (02) :235-265
[10]   Minimal surfaces and particles in 3-manifolds [J].
Krasnov, Kirill ;
Schlenker, Jean-Marc .
GEOMETRIAE DEDICATA, 2007, 126 (01) :187-254