EQUIVARIANT K-THEORY OF AFFINE FLAG MANIFOLDS AND AFFINE GROTHENDIECK POLYNOMIALS

被引:18
作者
Kashiwara, Masaki [1 ]
Shimozono, Mark [2 ]
机构
[1] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
[2] Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
SCHUBERT POLYNOMIALS; GRASSMANNIANS; COHOMOLOGY; FORMULA; RING;
D O I
10.1215/00127094-2009-032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the equivariant K-group of the affine flag manifold with respect to the Borel group action. We prove that the structure sheaf of the (infinite-dimensional) Schubert variety in the K-group is represented by a unique polynomial, which we call the affine Grothendieck polynomial.
引用
收藏
页码:501 / 538
页数:38
相关论文
共 23 条
[1]  
[Anonymous], 2002, Kac-Moody Groups, Their Flag Varieties and Their Representations
[2]  
[Anonymous], 1990, GRUNDLEHREN MATH WIS
[3]  
[Anonymous], 2006, Categories and Sheaves
[4]  
Bott R., 1958, MICH MATH J, V5, P35
[5]   A Littlewood-Richardson rule for the K-theory of Grassmannians [J].
Buch, AS .
ACTA MATHEMATICA, 2002, 189 (01) :37-78
[6]  
Demazure M., 1974, Ann. Sci. cole Norm. Sup, V7, P53, DOI DOI 10.24033/ASENS.1261
[7]   The Yang-Baxter equation, symmetric functions, and Schubert polynomials [J].
Fomin, S ;
Kirillov, AN .
DISCRETE MATHEMATICS, 1996, 153 (1-3) :123-143
[8]   A PIERI FORMULA IN THE GROTHENDIECK RING OF A FLAG BUNDLE [J].
FULTON, W ;
LASCOUX, A .
DUKE MATHEMATICAL JOURNAL, 1994, 76 (03) :711-729
[9]  
Hartshorne Robin, 1966, LECT NOTES MATH, V20
[10]  
Kashiwara M., 1989, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), P161