SPATIO-TEMPORAL PATTERN MINING ON TRAJECTORY DATA USING ARM

被引:2
|
作者
Khoshahval, S. [1 ]
Farnaghi, M. [1 ]
Taleai, M. [1 ]
机构
[1] KN Toosi Univ Technol, Fac Geodesy & Geomat Engn, Tehran, Iran
关键词
User Trajectory; Association Rule Mining; Location-based Application; Frequent Pattern Mining; Apriori Algorithm; LOCATIONS; MOVEMENT; GPS;
D O I
10.5194/isprs-archives-XLII-4-W4-395-2017
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Preliminary mobile was considered to be a device to make human connections easier. But today the consumption of this device has been evolved to a platform for gaming, web surfmg and GPS-enabled application capabilities. Embedding GPS in handheld devices, altered them to significant trajectory data gathering facilities. Raw GPS trajectory data is a series of points which contains hidden information. For revealing hidden information in traces, trajectory data analysis is needed. One of the most beneficial concealed information in trajectory data is user activity patterns. In each pattern, there are multiple stops and moves which identifies users visited places and tasks. This paper proposes an approach to discover user daily activity patterns from GPS trajectories using association rules. Finding user patterns needs extraction of user's visited places from stops and moves of GPS trajectories. In order to locate stops and moves, we have implemented a place recognition algorithm. After extraction of visited points an advanced association rule mining algorithm, called Apriori was used to extract user activity patterns. This study outlined that there are useful patterns in each trajectory that can be emerged from raw GPS data using association rule mining techniques in order to fmd out about multiple users' behaviour in a system and can be utilized in various location-based applications.
引用
收藏
页码:395 / 399
页数:5
相关论文
共 50 条
  • [31] Partial spatio-temporal co-occurrence pattern mining
    Celik, Mete
    KNOWLEDGE AND INFORMATION SYSTEMS, 2015, 44 (01) : 27 - 49
  • [32] Partial spatio-temporal co-occurrence pattern mining
    Mete Celik
    Knowledge and Information Systems, 2015, 44 : 27 - 49
  • [33] Semantic periodic pattern mining from spatio-temporal trajectories
    Zhang, Dongzhi
    Lee, Kyungmi
    Lee, Ickjai
    INFORMATION SCIENCES, 2019, 502 : 164 - 189
  • [34] A Novel and Efficient Spatio-Temporal Colocation Pattern Mining Algorithm
    Meshram, Swati
    Wagh, Kishor P.
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (02) : 1436 - 1446
  • [35] Spatio-temporal data mining in ecological and veterinary epidemiology
    Aristides Moustakas
    Stochastic Environmental Research and Risk Assessment, 2017, 31 : 829 - 834
  • [36] Mining Spatio-Temporal Data at Different Levels of Detail
    Camossi, Elena
    Bertolotto, Michela
    Kechadi, Tahar
    EUROPEAN INFORMATION SOCIETY: TAKING GEOINFORMATION SCIENCE ONE STEP FURTHER, 2009, : 225 - 240
  • [37] Spatio-Temporal Routine Mining on Mobile Phone Data
    Qin, Tian
    Shangguan, Wufan
    Song, Guojie
    Tang, Jie
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2018, 12 (05)
  • [38] Spatio-Temporal Data Mining: A Survey of Problems and Methods
    Atluri, Gowtham
    Karpatne, Anuj
    Kumar, Vipin
    ACM COMPUTING SURVEYS, 2018, 51 (04)
  • [39] Spatio-temporal data mining in ecological and veterinary epidemiology
    Moustakas, Aristides
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2017, 31 (04) : 829 - 834
  • [40] Spatio-Temporal Data Mining for Typhoon Image Collection
    Asanobu Kitamoto
    Journal of Intelligent Information Systems, 2002, 19 : 25 - 41