Understanding the genetic mechanism of resistance in aphid-treated alfalfa (Medicago sativa L.) through proteomic analysis

被引:4
作者
Chen, Jun [1 ]
Ullah, Hidayat [1 ,2 ]
Tu, Xiongbing [1 ]
Zhang, Zehua [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Plant Protect, State Key Lab Biol Plant Dis & Insect Pests, Beijing 100193, Peoples R China
[2] Univ Swabi, Dept Agr, Swabi 23561, Khyber Pakhtunk, Pakistan
基金
中国国家自然科学基金;
关键词
Alfalfa cultivar; Aphid resistance; Molecular mechanism; Proteomic analysis; PLANT-RESPONSES; FORAGE YIELD; DEFENSE; PROTEINS; CULTIVAR; RICE; QUANTIFICATION; PHOTOSYNTHESIS; BIOSYNTHESIS; QUANTITATION;
D O I
10.1007/s13205-019-1755-z
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
To minimize dependency on chemical pesticides, plant breeders are trying to emphasize on important agricultural pests for the development of pest resistant cultivars. However, the molecular approach and associated genetic tools conferring resistance have not been widely studied. In the current study, proteomic analysis of two of the alfalfa cultivars viz. a resistant (R) (Zhongmu-1) and a susceptible (S) (WL343), with (+ A) and without (- A) aphids rearing were carried out. Results indicated that 325 differentially expressed proteins (DEPs) up-regulated while 319 down-regulated with a pattern of R + A/R - A plants, whereas 371 up- and 583 down-regulated DEPs were identified in the S + A/S - A plants. Total number of DEPs found in (S + A/S - A) was around 19.7% greater than that of (R + A/R - A), whereas, the down-regulated DEPs of susceptible variety was 11.6% higher than the resistant cultivar. Applying the KEGG analysis, 96 and 142 DEPs were portrayed to 15 and 10 substantively augmented pathways for Zhongmu-1 and WL343, respectively. We also found that two of the shared pathways (carbon metabolism and pyruvate metabolism) are linking to important traits conferring resistance in alfalfa. Most importantly, the specific role of linoleic acid metabolism was found to be associated with jasmonic acid, flavonoid biosynthesis, and terpenoid backbone biosynthesis that might have been associated with the insect-resistant material synthesis in the resistant alfalfa cultivar. Our study suggested that both alfalfa cultivars (R, S) could govern protein expression through carbon and pyruvate metabolism. But only the resistant alfalfa cultivar (Zhongmu-1) can tune protein expression via linoleic acid metabolism and terpenoid backbone biosynthesis to induce the defensive protein expressions (e.g., jasmonic acid and flavonoid biosynthesis along with terpenoid backbone biosynthesis), to enhance plant defense capacity.
引用
收藏
页数:9
相关论文
共 65 条
  • [1] A probability-based approach for high-throughput protein phosphorylation analysis and site localization
    Beausoleil, Sean A.
    Villen, Judit
    Gerber, Scott A.
    Rush, John
    Gygi, Steven P.
    [J]. NATURE BIOTECHNOLOGY, 2006, 24 (10) : 1285 - 1292
  • [2] A CHLOROPLAST LIPOXYGENASE IS REQUIRED FOR WOUND-INDUCED JASMONIC ACID ACCUMULATION IN ARABIDOPSIS
    BELL, E
    CREELMAN, RA
    MULLET, JE
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (19) : 8675 - 8679
  • [3] Biotic stress globally downregulates photosynthesis genes
    Bilgin, Damla D.
    Zavala, Jorge A.
    Zhu, Jin
    Clough, Steven J.
    Ort, Donald R.
    DeLucia, Evan H.
    [J]. PLANT CELL AND ENVIRONMENT, 2010, 33 (10) : 1597 - 1613
  • [4] BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  • [5] Chekol T., 2001, Rem J, V11, P89, DOI [10.1002/rem.1017, DOI 10.1002/REM.1017, DOI 10.1002/rem.1017]
  • [6] Cole RA, 1997, ENTOMOL EXP APPL, V85, P121, DOI 10.1023/A:1003049105464
  • [7] Conrad HR, 1988, AGRONOMY, V29, P539
  • [8] Molecular aspects of defence priming
    Conrath, Uwe
    [J]. TRENDS IN PLANT SCIENCE, 2011, 16 (10) : 524 - 531
  • [9] Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ
    Cox, Juergen
    Hein, Marco Y.
    Luber, Christian A.
    Paron, Igor
    Nagaraj, Nagarjuna
    Mann, Matthias
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2014, 13 (09) : 2513 - 2526
  • [10] Comparison of the genomes of two Xanthomonas pathogens with differing host specificities
    A. C. R. da Silva
    J. A. Ferro
    F. C. Reinach
    C. S. Farah
    L. R. Furlan
    R. B. Quaggio
    C. B. Monteiro-Vitorello
    M. A. Van Sluys
    N. F. Almeida
    L. M. C. Alves
    A. M. do Amaral
    M. C. Bertolini
    L. E. A. Camargo
    G. Camarotte
    F. Cannavan
    J. Cardozo
    F. Chambergo
    L. P. Ciapina
    R. M. B. Cicarelli
    L. L. Coutinho
    J. R. Cursino-Santos
    H. El-Dorry
    J. B. Faria
    A. J. S. Ferreira
    R. C. C. Ferreira
    M. I. T. Ferro
    E. F. Formighieri
    M. C. Franco
    C. C. Greggio
    A. Gruber
    A. M. Katsuyama
    L. T. Kishi
    R. P. Leite
    E. G. M. Lemos
    M. V. F. Lemos
    E. C. Locali
    M. A. Machado
    A. M. B. N. Madeira
    N. M. Martinez-Rossi
    E. C. Martins
    J. Meidanis
    C. F. M. Menck
    C. Y. Miyaki
    D. H. Moon
    L. M. Moreira
    M. T. M. Novo
    V. K. Okura
    M. C. Oliveira
    V. R. Oliveira
    H. A. Pereira
    [J]. Nature, 2002, 417 (6887) : 459 - 463