A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

被引:8
作者
Huo, Ming-Xia [1 ]
Nie, Wei [1 ]
Hutchinson, David A. W. [1 ,2 ]
Kwek, Leong Chuan [1 ,3 ,4 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
[2] Univ Otago, Dept Phys, Dunedin, New Zealand
[3] Nanyang Technol Univ, Natl Inst Educ, Singapore 637616, Singapore
[4] Nanyang Technol Univ, Inst Adv Studies, Singapore 639673, Singapore
基金
新加坡国家研究基金会;
关键词
EFFECTIVE MAGNETIC-FIELDS; OPTICAL LATTICES; ENERGY-SPECTRA; GASES; OSCILLATIONS; POTENTIALS; PHASE; LIGHT;
D O I
10.1038/srep05992
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline'' solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.
引用
收藏
页数:6
相关论文
共 49 条
[1]   SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1959, 115 (03) :485-491
[2]   Experimental Realization of Strong Effective Magnetic Fields in an Optical Lattice [J].
Aidelsburger, M. ;
Atala, M. ;
Nascimbene, S. ;
Trotzky, S. ;
Chen, Y. -A. ;
Bloch, I. .
PHYSICAL REVIEW LETTERS, 2011, 107 (25)
[3]   Quantum many particle systems in ring-shaped optical lattices [J].
Amico, L ;
Osterloh, A ;
Cataliotti, F .
PHYSICAL REVIEW LETTERS, 2005, 95 (06)
[4]   Aharonov-Bohm oscillations in carbon nanotubes [J].
Bachtold, A ;
Strunk, C ;
Salvetat, JP ;
Bonard, JM ;
Forró, L ;
Nussbaumer, T ;
Schönenberger, C .
NATURE, 1999, 397 (6721) :673-675
[5]   Atomic Quantum Simulation of U(N) and SU(N) Non-Abelian Lattice Gauge Theories [J].
Banerjee, D. ;
Boegli, M. ;
Dalmonte, M. ;
Rico, E. ;
Stebler, P. ;
Wiese, U. -J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2013, 110 (12)
[6]   Atomic Quantum Simulation of Dynamical Gauge Fields Coupled to Fermionic Matter: From String Breaking to Evolution after a Quench [J].
Banerjee, D. ;
Dalmonte, M. ;
Mueller, M. ;
Rico, E. ;
Stebler, P. ;
Wiese, U. -J. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2012, 109 (17)
[7]   Optical detection of the Aharonov-Bohm effect on a charged particle in a nanoscale quantum ring [J].
Bayer, M ;
Korkusinski, M ;
Hawrylak, P ;
Gutbrod, T ;
Michel, M ;
Forchel, A .
PHYSICAL REVIEW LETTERS, 2003, 90 (18) :4-186801
[8]   Macroscopic test of the Aharonov-Bohm effect [J].
Caprez, Adam ;
Barwick, Brett ;
Batelaan, Herman .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[9]   SHIFT OF AN ELECTRON INTERFERENCE PATTERN BY ENCLOSED MAGNETIC FLUX [J].
CHAMBERS, RG .
PHYSICAL REVIEW LETTERS, 1960, 5 (01) :3-5
[10]   Colloquium: Artificial gauge potentials for neutral atoms [J].
Dalibard, Jean ;
Gerbier, Fabrice ;
Juzeliunas, Gediminas ;
Oehberg, Patrik .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04) :1523-1543