Controlled growth of 1D and 2D ZnO nanostructures on 4H-SiC using Au catalyst

被引:28
作者
Dahiya, Abhishek Singh [1 ]
Opoku, Charles [1 ]
Alquier, Daniel [1 ]
Poulin-Vittrant, Guylaine [1 ]
Cayrel, Frederic [1 ]
Graton, Olivier [1 ]
Hue, Louis-Pascal Tran Huu [1 ]
Camara, Nicolas [1 ]
机构
[1] Univ Tours, CNRS, GREMAN UMR 7347, F-37071 Tours, France
来源
NANOSCALE RESEARCH LETTERS | 2014年 / 9卷
关键词
Zinc oxide; Nanostructures; Nanowires; Nanowalls; Zinc cluster drift; NANOWIRE; NANOGENERATORS; NANOWALLS; GRAPHENE;
D O I
10.1186/1556-276X-9-379
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A perfect control of nanostructure growth is a prerequisite for the development of electronic and optoelectronic device/systems. In this article, we demonstrate the growth of various ZnO-derived nanostructures, including well-ordered arrays of high aspect ratio single crystalline nanowires with preferred growth direction along the [0001] axis, nanowalls, and hybrid nanowire-nanowall structures. The growths of the various ZnO nanostructures have been carried out on SiC substrates in a horizontal furnace, using Au thin film as catalyst. From experimental observations, we have ascribed the growth mechanisms of the different ZnO nanostructures to be a combination of catalytic-assisted and non-catalytic-assisted vapor-liquid-solid (VLS) processes. We have also found that the different ZnO nanoarchitectures' material evolution is governed by a Zn cluster drift effects on the SiC surface mainly driven by growth temperature. Au thin film thickness, growth time, and temperature are the parameters to optimize in order to obtain the different ZnO nanoarchitectures.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 30 条
[11]   Selected nanotechnologies for renewable energy applications [J].
Mao, Samuel S. ;
Chen, Xiaobo .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2007, 31 (6-7) :619-636
[12]   Single crystal nanowire vertical surround-gate field-effect transistor [J].
Ng, HT ;
Han, J ;
Yamada, T ;
Nguyen, P ;
Chen, YP ;
Meyyappan, M .
NANO LETTERS, 2004, 4 (07) :1247-1252
[13]   Growth of epitaxial nanowires at the junctions of nanowalls [J].
Ng, HT ;
Li, J ;
Smith, MK ;
Nguyen, P ;
Cassell, A ;
Han, J ;
Meyyappan, M .
SCIENCE, 2003, 300 (5623) :1249-1249
[14]  
Okamoto H., 1989, B ALLOY PHASE DIAGR, V10, P59, DOI DOI 10.1007/BF02882177
[15]   Potentiometric Cholesterol Biosensor Based on ZnO Nanowalls and Stabilized Polymerized Lipid Film [J].
Psychoyios, Vasillios N. ;
Nikoleli, Georgia-Paraskevi ;
Tzamtzis, Nikolaos ;
Nikolelis, Dimitrios P. ;
Psaroudakis, Nikolas ;
Danielsson, Bengt ;
Israr, Muhammad Qadir ;
Willander, Magnus .
ELECTROANALYSIS, 2013, 25 (02) :367-372
[16]   Tip-growth mode and base-growth mode of Au-catalyzed zinc oxide nanowires using chemical vapor deposition technique [J].
Pung, Swee-Yong ;
Choy, Kwang-Leong ;
Hou, Xianghui .
JOURNAL OF CRYSTAL GROWTH, 2010, 312 (14) :2049-2055
[17]   Self-organization of gold nanoclusters on hexagonal SiC and SiO2 surfaces [J].
Ruffino, F. ;
Canino, A. ;
Grimaldi, M. G. ;
Giannazzo, F. ;
Bongiorno, C. ;
Roccaforte, F. ;
Raineri, V. .
JOURNAL OF APPLIED PHYSICS, 2007, 101 (06)
[18]   Zn Cluster Drifting Effect for the Formation of ZnO 3D Nanoarchitecture [J].
Shi, Jian ;
Grutzik, Scott ;
Wang, Xudong .
ACS NANO, 2009, 3 (06) :1594-1602
[19]   Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO [J].
Tsukazaki, A ;
Ohtomo, A ;
Onuma, T ;
Ohtani, M ;
Makino, T ;
Sumiya, M ;
Ohtani, K ;
Chichibu, SF ;
Fuke, S ;
Segawa, Y ;
Ohno, H ;
Koinuma, H ;
Kawasaki, M .
NATURE MATERIALS, 2005, 4 (01) :42-46
[20]   In situ field emission of density-controlled ZnO nanowire arrays [J].
Wang, Xudong ;
Zhou, Jun ;
Lao, Changshi ;
Song, Jinhui ;
Xu, Ningsheng ;
Wang, Zhong L. .
ADVANCED MATERIALS, 2007, 19 (12) :1627-+