Controlled growth of 1D and 2D ZnO nanostructures on 4H-SiC using Au catalyst

被引:28
作者
Dahiya, Abhishek Singh [1 ]
Opoku, Charles [1 ]
Alquier, Daniel [1 ]
Poulin-Vittrant, Guylaine [1 ]
Cayrel, Frederic [1 ]
Graton, Olivier [1 ]
Hue, Louis-Pascal Tran Huu [1 ]
Camara, Nicolas [1 ]
机构
[1] Univ Tours, CNRS, GREMAN UMR 7347, F-37071 Tours, France
来源
NANOSCALE RESEARCH LETTERS | 2014年 / 9卷
关键词
Zinc oxide; Nanostructures; Nanowires; Nanowalls; Zinc cluster drift; NANOWIRE; NANOGENERATORS; NANOWALLS; GRAPHENE;
D O I
10.1186/1556-276X-9-379
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A perfect control of nanostructure growth is a prerequisite for the development of electronic and optoelectronic device/systems. In this article, we demonstrate the growth of various ZnO-derived nanostructures, including well-ordered arrays of high aspect ratio single crystalline nanowires with preferred growth direction along the [0001] axis, nanowalls, and hybrid nanowire-nanowall structures. The growths of the various ZnO nanostructures have been carried out on SiC substrates in a horizontal furnace, using Au thin film as catalyst. From experimental observations, we have ascribed the growth mechanisms of the different ZnO nanostructures to be a combination of catalytic-assisted and non-catalytic-assisted vapor-liquid-solid (VLS) processes. We have also found that the different ZnO nanoarchitectures' material evolution is governed by a Zn cluster drift effects on the SiC surface mainly driven by growth temperature. Au thin film thickness, growth time, and temperature are the parameters to optimize in order to obtain the different ZnO nanoarchitectures.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 30 条
[1]   The Growth and Optical Properties of ZnO Nanowalls [J].
Brewster, Megan M. ;
Lu, Ming-Yen ;
Lim, Sung Keun ;
Smith, Matthew J. ;
Zhou, Xiang ;
Gradecak, Silvija .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (15) :1940-1945
[2]   ZnO Nanowalls Grown with High-Pressure PLD and Their Applications as Field Emitters and UV Detectors [J].
Cao, B. Q. ;
Matsumoto, T. ;
Matsumoto, M. ;
Higashihata, M. ;
Nakamura, D. ;
Okada, T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (25) :10975-10980
[3]   Controllable growth of vertically aligned zinc oxide nanowires using vapour deposition [J].
Dalal, S. H. ;
Baptista, D. L. ;
Teo, K. B. K. ;
Lacerda, R. G. ;
Jefferson, D. A. ;
Milne, W. I. .
NANOTECHNOLOGY, 2006, 17 (19) :4811-4818
[4]   Room-temperature ultraviolet nanowire nanolasers [J].
Huang, MH ;
Mao, S ;
Feick, H ;
Yan, HQ ;
Wu, YY ;
Kind, H ;
Weber, E ;
Russo, R ;
Yang, PD .
SCIENCE, 2001, 292 (5523) :1897-1899
[5]  
Joo J, 2011, NAT MATER, V10, P596, DOI [10.1038/nmat3069, 10.1038/NMAT3069]
[6]   Investigation of Nucleation Mechanism and Tapering Observed in ZnO Nanowire Growth by Carbothermal Reduction Technique [J].
Kar, Ayan ;
Low, Ke-Bin ;
Oye, Michael ;
Stroscio, Michael A. ;
Dutta, Mitra ;
Nicholls, Alan ;
Meyyappan, M. .
NANOSCALE RESEARCH LETTERS, 2011, 6 :1-9
[7]   Gold at the root or at the Tip of ZnO Nanowires: A Model [J].
Kim, Dong Sik ;
Scholz, Roland ;
Goesele, Ulrich ;
Zacharias, Margit .
SMALL, 2008, 4 (10) :1615-1619
[8]   Epitaxial growth of ZnO nanowall networks on GaN/sapphire substrates [J].
Kim, Sang-Woo ;
Park, Hyun-Kyu ;
Yi, Min-Su ;
Park, Nae-Man ;
Park, Jong-Hyurk ;
Kim, Sang-Hyeob ;
Maeng, Sung-Lyul ;
Choi, Chel-Jong ;
Moon, Seung-Eon .
APPLIED PHYSICS LETTERS, 2007, 90 (03)
[9]   Controlled Growth of Semiconducting Nanowire, Nanowall, and Hybrid Nanostructures on Graphene for Piezoelectric Nanogenerators [J].
Kumar, Brijesh ;
Lee, Keun Young ;
Park, Hyun-Kyu ;
Chae, Seung Jin ;
Lee, Young Hee ;
Kim, Sang-Woo .
ACS NANO, 2011, 5 (05) :4197-4204
[10]   Vertically aligned ZnO nanowire arrays on GaN and SiC substrates [J].
Mai, Wenjie ;
Gao, Puxian ;
Lao, Changshi ;
Wang, Zhong Lin ;
Sood, Ashok K. ;
Polla, Dennis L. ;
Soprano, Martin B. .
CHEMICAL PHYSICS LETTERS, 2008, 460 (1-3) :253-256