Bounding the exponent of a verbal subgroup

被引:8
作者
Detomi, Eloisa [1 ]
Morigi, Marta [2 ]
Shumyatsky, Pavel [3 ]
机构
[1] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
[2] Univ Bologna, Dipartimento Matemat, I-40126 Bologna, Italy
[3] Univ Brasilia, Dept Math, BR-70910900 Brasilia, DF, Brazil
关键词
Verbal subgroup; Commutator words; Engel words; Exponent; PROFINITE GROUPS; THEOREM;
D O I
10.1007/s10231-013-0336-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We deal with the following conjecture. If is a group word and is a finite group in which any nilpotent subgroup generated by w-values has exponent dividing e, then the exponent of the verbal subgroup w(G) is bounded in terms of and only. We show that this is true in the case where w is either the nth Engel word or the word [x(n), y(1), y(2), ..., y(k)] (Theorem A). Further, we show that for any positive integer e there exists a number k = k(e) such that if is a word and is a finite group in which any nilpotent subgroup generated by products of k values of the word w has exponent dividing e, then the exponent of the verbal subgroup w(G) is bounded in terms of e and w only (Theorem B).
引用
收藏
页码:1431 / 1441
页数:11
相关论文
共 21 条
[1]   A focal subgroup theorem for outer commutator words [J].
Acciarri, Cristina ;
Fernandez-Alcober, Gustavo A. ;
Shumyatsky, Pavel .
JOURNAL OF GROUP THEORY, 2012, 15 (03) :397-405
[2]  
[Anonymous], 1990, Izv. Akad. Nauk SSSR Ser. Mat, DOI 10.1070/IM1991v036n01ABEH001946
[3]  
[Anonymous], 1956, Proc. London Math. Soc.
[4]   A note on Engel groups and local nilpotence [J].
Burns, RG ;
Medvedev, Y .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1998, 64 :92-100
[5]   ON VERBAL SUBGROUPS IN RESIDUALLY FINITE GROUPS [J].
Caldeira, Jhone ;
Shumyatsky, Pavel .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 84 (01) :159-170
[6]  
Casolo C., ARXIV12033645
[7]  
Feit W., 1973, PAC J MATH, V13, P773
[8]   CHARACTERIZATIONS OF THE SOLVABLE RADICAL [J].
Flavell, Paul ;
Guest, Simon ;
Guralnick, Robert .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (04) :1161-1170
[9]  
Jones G. A., 1974, Journal of the Australian Mathematical Society, Series A (Pure Mathematics), V17, P163
[10]   The Ore conjecture [J].
Liebeck, Martin W. ;
O'Brien, E. A. ;
Shalev, Aner ;
Tiep, Pham Huu .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (04) :939-1008