SUPERCONVERGENT PRODUCT INTEGRATION METHOD FOR HAMMERSTEIN INTEGRAL EQUATIONS

被引:10
作者
Allouch, C. [1 ]
Sbibih, D. [2 ]
Tahrichi, M. [2 ]
机构
[1] Univ Mohammed 1, FPN, Team Modelling & Sci Comp, Nador, Morocco
[2] Univ Mohammed 1, FSO, LANO Lab, Oujda, Morocco
关键词
Hammerstein equations; product integration; Gauss points; superconvergence; COLLOCATION-TYPE METHOD; DEGENERATE KERNEL METHODS; PROJECTION METHODS; NYSTROM;
D O I
10.1216/JIE-2019-31-1-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define a superconvergent projection method for approximating the solution of Hammerstein integral equations of the second kind. The projection is chosen either to be the orthogonal or an interpolatory projection at Gauss points onto the space of discontinuous piecewise polynomials. For a smooth kernel or one less smooth along the diagonal, the order of convergence of the proposed method improves upon the classical product integration method. Several numerical examples are given to demonstrate the effectiveness of the current method.
引用
收藏
页码:1 / 28
页数:28
相关论文
共 32 条
[1]  
Agarwal R.P., 1999, POSITIVE SOLUTIONS D
[2]   Superconvergent Nystrom and degenerate kernel methods for Hammerstein integral equations [J].
Allouch, C. ;
Sbibih, D. ;
Tahrichi, M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 258 :30-41
[3]   SUPERCONVERGENT NYSTROM AND DEGENERATE KERNEL METHODS FOR INTEGRAL EQUATIONS OF THE SECOND KIND [J].
Allouch, C. ;
Sablonniere, P. ;
Sbibih, D. ;
Tahrichi, M. .
JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2012, 24 (04) :463-485
[4]   Spectral refinement based on superconvergent Nystrom and degenerate kernel methods [J].
Allouch, C. ;
Sbibih, D. ;
Tahrichi, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (22) :10777-10790
[5]   Superconvergent Nystrom and degenerate kernel methods for eigenvalue problems [J].
Alouch, C. ;
Sablonniere, P. ;
Sbibih, D. ;
Tahrichi, M. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (20) :7851-7866
[6]  
[Anonymous], 1984, NONDISCRETE INDUCTIO
[7]  
[Anonymous], 1998, EXISTENCE THEORY NON
[8]   PIECEWISE CONTINUOUS COLLOCATION FOR INTEGRAL-EQUATIONS [J].
ATKINSON, K ;
GRAHAM, I ;
SLOAN, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (01) :172-186
[9]  
Atkinson K., 1992, J INTEGR EQUAT APPL, V4, P15, DOI 10.1216/jiea/1181075664
[10]  
Atkinson K., 1997, NUMERICAL SOLUTION I