Localization of two-dimensional quantum walks

被引:118
作者
Inui, N
Konishi, Y
Konno, N
机构
[1] Himeji Inst Technol, Grad Sch Engn, Himeji, Hyogo 6712201, Japan
[2] Yokohama Natl Univ, Dept Appl Math, Yokohama, Kanagawa 2408501, Japan
来源
PHYSICAL REVIEW A | 2004年 / 69卷 / 05期
关键词
D O I
10.1103/PhysRevA.69.052323
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The Grover walk, which is related to Grover's search algorithm on a quantum computer, is one of the typical discrete time quantum walks. However, a localization of the two-dimensional Grover walk starting from a fixed point is strikingly different from other types of quantum walks. The present paper explains the reason why the walker who moves according to the degree-four Grover operator can remain at the starting point with a high probability. It is shown that the key factor for the localization is due to the degeneration of eigenvalues of the time evolution operator. In fact, the global time evolution of the quantum walk on a large lattice is mainly determined by the degree of degeneration. The dependence of the localization on the initial state is also considered by calculating the wave function analytically.
引用
收藏
页码:052323 / 1
页数:9
相关论文
共 50 条
[31]   Localizationlike effect in two-dimensional alternate quantum walks with periodic coin operations [J].
Di Franco, Carlo ;
Paternostro, Mauro .
PHYSICAL REVIEW A, 2015, 91 (01)
[32]   Quantum walks on a programmable two-dimensional 62-qubit superconducting processor [J].
Gong, Ming ;
Wang, Shiyu ;
Zha, Chen ;
Chen, Ming-Cheng ;
Huang, He-Liang ;
Wu, Yulin ;
Zhu, Qingling ;
Zhao, Youwei ;
Li, Shaowei ;
Guo, Shaojun ;
Qian, Haoran ;
Ye, Yangsen ;
Chen, Fusheng ;
Ying, Chong ;
Yu, Jiale ;
Fan, Daojin ;
Wu, Dachao ;
Su, Hong ;
Deng, Hui ;
Rong, Hao ;
Zhang, Kaili ;
Cao, Sirui ;
Lin, Jin ;
Xu, Yu ;
Sun, Lihua ;
Guo, Cheng ;
Li, Na ;
Liang, Futian ;
Bastidas, V. M. ;
Nemoto, Kae ;
Munro, W. J. ;
Huo, Yong-Heng ;
Lu, Chao-Yang ;
Peng, Cheng-Zhi ;
Zhu, Xiaobo ;
Pan, Jian-Wei .
SCIENCE, 2021, 372 (6545) :948-+
[33]   A hybrid NEQR image encryption cryptosystem using two-dimensional quantum walks and quantum coding [J].
Hao, Wentao ;
Zhang, Tianshuo ;
Chen, Xianyi ;
Zhou, Xiaoyi .
SIGNAL PROCESSING, 2023, 205
[34]   Decoherence in two-dimensional quantum walks using four- and two-state particles [J].
Chandrashekar, C. M. ;
Busch, T. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (10)
[35]   Localization in one- and two-dimensional quantum Coulomb glasses [J].
Jeon, GS ;
Wu, S ;
Lee, HW ;
Choi, MY .
PHYSICAL REVIEW B, 1999, 59 (04) :3033-3039
[36]   Level statistics and localization in a two-dimensional quantum percolation problem [J].
Letz, M ;
Ziegler, K .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1999, 79 (03) :491-499
[37]   Efficient two-dimensional localization effect in a semiconductor quantum well [J].
Wang, Zhiping ;
Wu, Xuqiang ;
Zhen, Shenglai ;
Yu, Benli ;
Lu, Liang .
LASER PHYSICS, 2014, 24 (08)
[38]   Localization and Melting of Interfaces in the Two-Dimensional Quantum Ising Model [J].
Balducci, Federico ;
Gambassi, Andrea ;
Lerose, Alessio ;
Scardicchio, Antonello ;
Vanoni, Carlo .
PHYSICAL REVIEW LETTERS, 2022, 129 (12)
[39]   Deterministic Random Walks on the Two-Dimensional Grid [J].
Doerr, Benjamin ;
Friedrich, Tobias .
COMBINATORICS PROBABILITY & COMPUTING, 2009, 18 (1-2) :123-144
[40]   DIFFUSION ON TWO-DIMENSIONAL RANDOM-WALKS [J].
DEKEYSER, R ;
MARITAN, A ;
STELLA, A .
PHYSICAL REVIEW LETTERS, 1987, 58 (17) :1758-1760