Monochromatic Clique Decompositions of Graphs

被引:2
作者
Liu, Henry [1 ]
Pikhurko, Oleg [2 ]
Sousa, Teresa [1 ,3 ]
机构
[1] Univ Nova Lisboa, Ctr Matemat & Aplicacoes, Fac Ciencias & Tecnol, Caparica, Portugal
[2] Univ Warwick, Math Inst & Dimap, Coventry CV4 7AL, W Midlands, England
[3] Univ Nova Lisboa, Dept Matemat, Fac Ciencias & Tecnol, P-2829516 Caparica, Portugal
基金
英国工程与自然科学研究理事会;
关键词
monochromatic graph decomposition; Turan number; Ramsey number; MINIMUM H-DECOMPOSITIONS;
D O I
10.1002/jgt.21851
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph whose edges are colored with k colors, and H=(H1,,Hk) be a k-tuple of graphs. A monochromaticH-decomposition of G is a partition of the edge set of G such that each part is either a single edge or forms a monochromatic copy of Hi in color i, for some 1ik. Let phi k(n,H) be the smallest number phi, such that, for every order-n graph and every k-edge-coloring, there is a monochromatic H-decomposition with at most phi elements. Extending the previous results of Liu and Sousa [Monochromatic Kr-decompositions of graphs, J Graph Theory 76 (2014), 89-100], we solve this problem when each graph in H is a clique and nn0(H) is sufficiently large. (C) 2015 The Authors Journal of Graph Theory Published by Wiley Periodicals, Inc.
引用
收藏
页码:287 / 298
页数:12
相关论文
共 22 条
[1]   An improved error term for minimum H-decompositions of graphs [J].
Allen, Peter ;
Boettcher, Julia ;
Person, Yury .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 108 :92-101
[2]  
BOLLOBAS B, 1976, MATH PROC CAMBRIDGE, V79, P19, DOI 10.1017/S0305004100052063
[3]  
Bollobas B., 1998, GRAD TEXT M, P215
[4]   Graph decomposition is NP-complete: A complete proof of Holyer's conjecture [J].
Dor, D ;
Tarsi, M .
SIAM JOURNAL ON COMPUTING, 1997, 26 (04) :1166-1187
[5]   REPRESENTATION OF A GRAPH BY SET INTERSECTIONS [J].
ERDOS, P ;
GOODMAN, AW ;
POSA, L .
CANADIAN JOURNAL OF MATHEMATICS, 1966, 18 (01) :106-&
[6]  
Erdos P., 1966, THEORY, V117-123, P124
[7]  
GYORI E, 1988, COLLOQ MATH SOC J B, V52, P267
[8]   ON THE NUMBER OF EDGE DISJOINT CLIQUES IN GRAPHS OF GIVEN SIZE [J].
GYORI, E .
COMBINATORICA, 1991, 11 (03) :231-243
[9]   Integer and fractional packings in dense graphs [J].
Haxell, PE ;
Rödl, V .
COMBINATORICA, 2001, 21 (01) :13-38
[10]   ON A CONJECTURE OF TUZA ABOUT PACKING AND COVERING OF TRIANGLES [J].
KRIVELEVICH, M .
DISCRETE MATHEMATICS, 1995, 142 (1-3) :281-286