Hardy inequalities on Riemannian manifolds and applications

被引:68
作者
D'Ambrosio, Lorenzo [1 ]
Dipierro, Serena [2 ]
机构
[1] Dipartimento Matemat, I-70125 Bari, Italy
[2] SISSA, Sect Math Anal, I-34136 Trieste, Italy
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 2014年 / 31卷 / 03期
关键词
Hardy inequality; Riemannian manifolds; Parabolic manifolds; Caccioppoli inequality; Weighted Gagliardo-Nirenberg inequality; Interpolation inequality; GAGLIARDO-NIRENBERG INEQUALITIES; RELLICH INEQUALITIES; P-LAPLACIAN; CONSTANTS;
D O I
10.1016/j.anihpc.2013.04.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a simple sufficient criterion to obtain some Hardy inequalities on Riemannian manifolds related to quasilinear second order differential operator Delta(p)u := diva (vertical bar del u vertical bar(P-2) del u). Namely, if p is a nonnegative weight such that -Delta(p)p >= 0, then the Hardy inequality [GRAPHICS] holds. We show concrete examples specializing the function p. Our approach allows to obtain a characterization of p-hyperbolic manifolds as well as other inequalities related to Caccioppoli inequalities, weighted Gagliardo-Nirenberg inequalities, uncertain principle and first order Caffarelli-Kohn-Nirenberg interpolation inequality. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:449 / 475
页数:27
相关论文
共 50 条
[1]  
Adimurthi, 2006, P ROY SOC EDINB A, V136, P1111
[2]   Hardy type inequalities on complete Riemannian manifolds [J].
Adriano, Levi ;
Xia, Changyu .
MONATSHEFTE FUR MATHEMATIK, 2011, 163 (02) :115-129
[3]  
[Anonymous], 1997, Rev. Mat. Univ. Complut. Madrid
[4]  
[Anonymous], 1996, ACTES TABLE RONDE G
[5]  
Aubin T., 1998, Springer Monographs in Mathematics
[6]   THE HEAT-EQUATION WITH A SINGULAR POTENTIAL [J].
BARAS, P ;
GOLDSTEIN, JA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 284 (01) :121-139
[7]   A unified approach to improved Lp hardy inequalities with best constants [J].
Barbatis, G ;
Filippas, S ;
Tertikas, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (06) :2169-2196
[8]  
BOZHKOV Y, 2008, LECT NOTES SEMIN INT, V7, P65
[9]   Conformal Killing Vector Fields and Rellich Type Identities on Riemannian Manifolds, II [J].
Bozhkov, Yuri ;
Mitidieri, Enzo .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2012, 9 (01) :1-20
[10]  
Brezis H, 1998, B UNIONE MAT ITAL, V1B, P223