The Toda lattice is super-integrable

被引:23
作者
Agrotis, MA [1 ]
Damianou, PA [1 ]
Sophocleous, C [1 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
关键词
Toda lattice; super-integrable systems; Poisson brackets;
D O I
10.1016/j.physa.2006.01.001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that the classical, non-periodic Toda lattice is super-integrable. In other words, we show that it possesses 2N - 1 independent constants of motion, where N is the number of degrees of freedom. The main ingredient of the proof is the use of some special action-angle coordinates introduced by Moser to solve the equations of motion. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:235 / 243
页数:9
相关论文
共 11 条
[1]  
ADLER M, 1979, INVENT MATH, V50, P219
[2]  
Atiyah M., 1988, GEOMETRY DYNAMICS MA
[3]   MULTIPLE HAMILTONIAN STRUCTURES FOR TODA-TYPE SYSTEMS [J].
DAMIANOU, PA .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (10) :5511-5541
[4]   MASTER SYMMETRIES AND R-MATRICES FOR THE TODA LATTICE [J].
DAMIANOU, PA .
LETTERS IN MATHEMATICAL PHYSICS, 1990, 20 (02) :101-112
[5]  
DAMIANOU PA, 2003, P 16 INT S NONL AC, V1, P618
[6]   Poisson brackets on rational functions and multi-Hamiltonian structure for integrable lattices [J].
Faybusovich, L ;
Gekhtman, M .
PHYSICS LETTERS A, 2000, 272 (04) :236-244
[7]   TODA LATTICE .2. EXISTENCE OF INTEGRALS [J].
FLASCHKA, H .
PHYSICAL REVIEW B, 1974, 9 (04) :1924-1925
[8]   INTEGRALS OF TODA LATTICE [J].
HENON, M .
PHYSICAL REVIEW B, 1974, 9 (04) :1921-1923
[9]  
MANAKOV SV, 1974, ZH EKSP TEOR FIZ+, V67, P543
[10]  
MOSER J, 1976, LECT NOTE PHYS, V38, P97