Lithium Dendrites Inhibition via Diffusion Enhancement

被引:122
作者
Chen, Yongxiu [1 ,2 ]
Dou, Xiangyu [1 ,2 ]
Wang, Kai [1 ,2 ]
Han, Yongsheng [1 ,2 ]
机构
[1] Chinese Acad Sci, State Key Lab Multiphase Complex Syst, Inst Proc Engn, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Chem Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
concentration gradient; dendrites; diffusion enhancement; external electric field; lithium batteries; METAL; SEPARATOR; GROWTH; CHALLENGES; SUPPRESSION; DEPOSITION; PARTICLES; BATTERIES;
D O I
10.1002/aenm.201900019
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The dendritic structure is a disastrous problem of lithium metal batteries as well as other metal rechargeable batteries. The dendritic structures are usually caused by diffusion limitation. Here, a novel strategy is reported to inhibit lithium dendrites based on the understanding of their formation mechanism. An alternating current field perpendicular to the anode is set up, which promotes Li+ movement along the anode surface and prevents ions' deposition on the tips from forming dendrites. Furthermore, an external direct current field parallel to the current is employed, which accelerates the transport of Li+ in electrolytes to mitigate the concentration gradient nearby the anode and thus inhibits the formation of dendritic structures. A simultaneous employment of these two fields gains five times increase of the lifespan of batteries at the high charging current density of 2 mA cm(-2), confirming the effectiveness of this strategy in protecting the metal anode and inhibiting lithium dendrites. This strategy may have a wide feasibility since it does not change the materials and structures of batteries.
引用
收藏
页数:7
相关论文
共 47 条
[1]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[2]  
Bai S., 2016, NAT ENERGY, V1, P1
[3]   Dendritic growth mechanisms in lithium/polymer cells [J].
Brissot, C ;
Rosso, M ;
Chazalviel, JN ;
Lascaud, S .
JOURNAL OF POWER SOURCES, 1999, 81 :925-929
[4]   Anodes for Rechargeable Lithium-Sulfur Batteries [J].
Cao, Ruiguo ;
Xu, Wu ;
Lv, Dongping ;
Xiao, Jie ;
Zhang, Ji-Guang .
ADVANCED ENERGY MATERIALS, 2015, 5 (16)
[5]   2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries [J].
Cha, Eunho ;
Patel, Mumukshu D. ;
Park, Juhong ;
Hwang, Jeongwoon ;
Prasad, Vish ;
Cho, Kyeongjae ;
Choi, Wonbong .
NATURE NANOTECHNOLOGY, 2018, 13 (04) :337-+
[6]   Nanodiamonds suppress the growth of lithium dendrites [J].
Cheng, Xin-Bing ;
Zhao, Meng-Qiang ;
Chen, Chi ;
Pentecost, Amanda ;
Maleski, Kathleen ;
Mathis, Tyler ;
Zhang, Xue-Qiang ;
Zhang, Qiang ;
Jiang, Jianjun ;
Gogotsi, Yury .
NATURE COMMUNICATIONS, 2017, 8
[7]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[8]   Bifunctional Separator with a Light-Weight Carbon-Coating for Dynamically and Statically Stable Lithium-Sulfur Batteries [J].
Chung, Sheng-Heng ;
Manthiram, Arumugam .
ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (33) :5299-5306
[9]   Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism [J].
Ding, Fei ;
Xu, Wu ;
Graff, Gordon L. ;
Zhang, Jian ;
Sushko, Maria L. ;
Chen, Xilin ;
Shao, Yuyan ;
Engelhard, Mark H. ;
Nie, Zimin ;
Xiao, Jie ;
Liu, Xingjiang ;
Sushko, Peter V. ;
Liu, Jun ;
Zhang, Ji-Guang .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (11) :4450-4456
[10]   Stable Lithium Electrodeposition at Ultra-High Current Densities Enabled by 3D PMF/Li Composite Anode [J].
Fan, Lei ;
Zhuang, Houlong L. ;
Zhang, Weidong ;
Fu, Yao ;
Liao, Zhihao ;
Lu, Yingying .
ADVANCED ENERGY MATERIALS, 2018, 8 (15)