On θ-episturmian words

被引:4
作者
Bucci, Michelangelo [1 ]
de Luca, Aldo [1 ]
De Luca, Alessandro [1 ]
Zamboni, Luca Q. [2 ,3 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
[2] Univ Lyon 1, CNRS, UMR 5208, Inst Camille Jordan, F-69622 Villeurbanne, France
[3] Reykjavik Univ, Sch Comp Sci, IS-103 Reykjavik, Iceland
关键词
INFINITE WORDS; POWERS; FINE;
D O I
10.1016/j.ejc.2008.04.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study a class of infinite words on a finite alphabet A whose factors are closed under the image of an involutory antimorphism theta of the free monoid A*. We show that given a recurrent infinite word to omega epsilon A(N), if there exists a positive integer K Such that for each n >= 1 the word omega has (1) card A+(n - 1)K distinct factors of length n, and (2) a unique right and a unique left special factor of length n, then there exists an involutory antimorphism theta of the free monoid A* preserving the set of factors of omega. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:473 / 479
页数:7
相关论文
共 33 条
[1]  
Anne V., 2005, WORDS 2005, V36, P91
[2]   GEOMETRIC REPRESENTATION OF SEQUENCES OF COMPLEXITY 2N+1 [J].
ARNOUX, P ;
RAUZY, G .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1991, 119 (02) :199-215
[3]  
BERSTEL J, 1994, B BELG MATH SOC, V1, P175
[4]  
BERSTEL J, 2002, LOTHAIRE ALGEBRAIC C
[5]   Frequencies of factors of Sturmian sequences [J].
Berthe, V .
THEORETICAL COMPUTER SCIENCE, 1996, 165 (02) :295-309
[6]   Initial powers of Sturmian sequences [J].
Berthe, Valerie ;
Holton, Charles ;
Zamboni, Luca Q. .
ACTA ARITHMETICA, 2006, 122 (04) :315-347
[7]   On different generalizations of episturmian words [J].
Bucci, Michelangelo ;
de Luca, Aldo ;
De Luca, Alessandro ;
Zamboni, Luca Q. .
THEORETICAL COMPUTER SCIENCE, 2008, 393 (1-3) :23-36
[8]   Fine and Wilf's theorem for three periods and a generalization of Sturmian words [J].
Castelli, MG ;
Mignosi, F ;
Restivo, A .
THEORETICAL COMPUTER SCIENCE, 1999, 218 (01) :83-94
[9]  
Coven E. M., 1973, Math. Syst. Theory, V7, P138, DOI DOI 10.1007/BF01762232
[10]   Pseudopalindrome closure operators in free monoids [J].
de Luca, Aldo ;
De Luca, Alessandro .
THEORETICAL COMPUTER SCIENCE, 2006, 362 (1-3) :282-300