Training deep neural density estimators to identify mechanistic models of neural dynamics

被引:127
作者
Goncalves, Pedro J. [1 ,2 ]
Lueckmann, Jan-Matthis [1 ,2 ]
Deistler, Michael [1 ,3 ]
Nonnenmacher, Marcel [1 ,2 ,4 ]
Oecal, Kaan [2 ,5 ]
Bassetto, Giacomo [1 ,2 ]
Chintaluri, Chaitanya [6 ,7 ]
Podlaski, William F. [6 ]
Haddad, Sara A. [8 ]
Vogels, Tim P. [6 ,7 ]
Greenberg, David S. [1 ,4 ]
Macke, Jakob H. [1 ,2 ,3 ,9 ]
机构
[1] Tech Univ Munich, Dept Elect & Comp Engn, Computat Neuroengn, Munich, Germany
[2] Max Planck Res Grp Neural Syst Anal, Ctr Adv European Studies & Res Caesar, Bonn, Germany
[3] Univ Tubingen, Machine Learning Sci, Excellence Cluster Machine Learning, Tubingen, Germany
[4] Helmholtz Ctr Geesthacht, Inst Coastal Res, Model Driven Machine Learning, Geesthacht, Germany
[5] Univ Bonn, Math Inst, Bonn, Germany
[6] Univ Oxford, Ctr Neural Circuits & Behav, Oxford, England
[7] IST Austria, Klosterneuburg, Austria
[8] Max Planck Inst Brain Res, Frankfurt, Germany
[9] Max Planck Inst Intelligent Syst, Tubingen, Germany
基金
英国生物技术与生命科学研究理事会; 英国惠康基金; 欧盟地平线“2020”; 英国科研创新办公室;
关键词
APPROXIMATE BAYESIAN COMPUTATION; RECEPTIVE-FIELDS; MONTE-CARLO; NETWORK; VARIABILITY; INFERENCE; COMPENSATION; HOMEOSTASIS; POPULATION; FRAMEWORK;
D O I
10.7554/eLife.56261
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mechanistic modeling in neuroscience aims to explain observed phenomena in terms of underlying causes. However, determining which model parameters agree with complex and stochastic neural data presents a significant challenge. We address this challenge with a machine learning tool which uses deep neural density estimators-trained using model simulations-to carry out Bayesian inference and retrieve the full space of parameters compatible with raw data or selected data features. Our method is scalable in parameters and data features and can rapidly analyze new data after initial training. We demonstrate the power and flexibility of our approach on receptive fields, ion channels, and Hodgkin-Huxley models. We also characterize the space of circuit configurations giving rise to rhythmic activity in the crustacean stomatogastric ganglion, and use these results to derive hypotheses for underlying compensation mechanisms. Our approach will help close the gap between data-driven and theory-driven models of neural dynamics.
引用
收藏
页数:45
相关论文
共 142 条
[1]  
Abbott L, 1998, MODELING SMALL NETWO
[2]   Complex parameter landscape for a complex neuron model [J].
Achard, Pablo ;
De Schutter, Erik .
PLOS COMPUTATIONAL BIOLOGY, 2006, 2 (07) :794-804
[3]   Visualization of currents in neural models with similar behavior and different conductance densities [J].
Alonso, Leandro M. ;
Marder, Eve .
ELIFE, 2019, 8
[4]  
[Anonymous], 2014, ADAM METHOD STOCHAST
[5]  
[Anonymous], 2017, ADV NEURAL INFORM PR
[6]   Mechanistic models versus machine learning, a fight worth fighting for the biological community? [J].
Baker, Ruth E. ;
Pena, Jose-Maria ;
Jayamohan, Jayaratnam ;
Jerusalem, Antoine .
BIOLOGY LETTERS, 2018, 14 (05)
[7]   Expectation Propagation for Likelihood-Free Inference [J].
Barthelme, Simon ;
Chopin, Nicolas .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2014, 109 (505) :315-333
[8]   On the nature and use of models in network neuroscience [J].
Bassett, Danielle S. ;
Zurn, Perry ;
Gold, Joshua I. .
NATURE REVIEWS NEUROSCIENCE, 2018, 19 (09) :566-578
[9]  
Beaumont MA, 2002, GENETICS, V162, P2025
[10]   Adaptive approximate Bayesian computation [J].
Beaumont, Mark A. ;
Cornuet, Jean-Marie ;
Marin, Jean-Michel ;
Robert, Christian P. .
BIOMETRIKA, 2009, 96 (04) :983-990