VISCOSITY SOLUTIONS OF HJB EQUATIONS ARISING FROM THE VALUATION OF EUROPEAN PASSPORT OPTIONS

被引:0
作者
Bian Baojun [1 ]
Wang Yang [1 ,2 ]
Zhang Jizhou [2 ]
机构
[1] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[2] Shanghai Normal Univ, Math & Sci Coll, Shanghai 200234, Peoples R China
基金
美国国家科学基金会;
关键词
passport option; HJB equation; viscosity solution; uniqueness; convexity preserving;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The passport option is a call option on the balance of a trading account. The option holder retains the gain from trading, while the issuer is liable for the net loss. In this article, the mathematical foundation for pricing the European passport option is established. The pricing equation which is a fully nonlinear equation is derived using the dynamic programming principle. The comparison principle, uniqueness and convexity preserving of the viscosity solutions of related HJB equation are proved. A relationship between the passport and lookback options is discussed.
引用
收藏
页码:187 / 202
页数:16
相关论文
共 19 条
[1]  
Ahn, 1999, ASIA PACIFIC FINANC, V6, P171, DOI [DOI 10.1023/A:1010093029306, 10.1023/A:1010093029306]
[2]  
Ahn H, 1998, APPL MATH FINANCE, V6, P275, DOI [10.1080/13504869950079293, DOI 10.1080/13504869950079293]
[3]   Convex viscosity solutions and state constraints [J].
Alvarez, O ;
Lasry, JM ;
Lions, PL .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1997, 76 (03) :265-288
[4]  
Andersen L., 1998, J COMPUT FINANC, V1, P15, DOI DOI 10.21314/JCF.1998.013
[5]   A semilinear Black and Scholes partial differential equation for valuing American options [J].
Benth, FE ;
Karlsen, KH ;
Reikvam, K .
FINANCE AND STOCHASTICS, 2003, 7 (03) :277-298
[6]  
Chan SS, 1999, VALUATION AM PASSPOR
[7]   USERS GUIDE TO VISCOSITY SOLUTIONS OF 2ND-ORDER PARTIAL-DIFFERENTIAL EQUATIONS [J].
CRANDALL, MG ;
ISHII, H ;
LIONS, PL .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 27 (01) :1-67
[8]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[9]  
Feldman M, 2007, ANN U FERRARA, V53, P65, DOI [10.1007/s11565-007-0006-0, DOI 10.1007/S11565-007-0006-0]
[10]   COMPARISON PRINCIPLE AND CONVEXITY PRESERVING PROPERTIES FOR SINGULAR DEGENERATE PARABOLIC EQUATIONS ON UNBOUNDED-DOMAINS [J].
GIGA, Y ;
GOTO, S ;
ISHII, H ;
SATO, MH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (02) :443-470