Deep neural network-based automatic metasurface design with a wide frequency range

被引:81
作者
Ghorbani, Fardin [1 ]
Beyraghi, Sina [1 ]
Shabanpour, Javad [1 ]
Oraizi, Homayoon [1 ]
Soleimani, Hossein [1 ]
Soleimani, Mohammad [1 ]
机构
[1] Iran Univ Sci & Technol, Sch Elect Engn, Tehran 1648613114, Iran
关键词
LINEAR-POLARIZATION CONVERSION;
D O I
10.1038/s41598-021-86588-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Beyond the scope of conventional metasurface, which necessitates plenty of computational resources and time, an inverse design approach using machine learning algorithms promises an effective way for metasurface design. In this paper, benefiting from Deep Neural Network (DNN), an inverse design procedure of a metasurface in an ultra-wide working frequency band is presented in which the output unit cell structure can be directly computed by a specified design target. To reach the highest working frequency for training the DNN, we consider 8 ring-shaped patterns to generate resonant notches at a wide range of working frequencies from 4 to 45 GHz. We propose two network architectures. In one architecture, we restrict the output of the DNN, so the network can only generate the metasurface structure from the input of 8 ring-shaped patterns. This approach drastically reduces the computational time, while keeping the network's accuracy above 91%. We show that our model based on DNN can satisfactorily generate the output metasurface structure with an average accuracy of over 90% in both network architectures. Determination of the metasurface structure directly without time-consuming optimization procedures, an ultra-wide working frequency, and high average accuracy equip an inspiring platform for engineering projects without the need for complex electromagnetic theory.
引用
收藏
页数:8
相关论文
共 35 条
[1]   A Deep Learning Approach for Objective-Driven All-Dielectric Metasurface Design [J].
An, Sensong ;
Fowler, Clayton ;
Zheng, Bowen ;
Shalaginov, Mikhail Y. ;
Tang, Hong ;
Li, Hang ;
Zhou, Li ;
Ding, Jun ;
Agarwal, Anuradha Murthy ;
Rivero-Baleine, Clara ;
Richardson, Kathleen A. ;
Gu, Tian ;
Hu, Juejun ;
Zhang, Hualiang .
ACS PHOTONICS, 2019, 6 (12) :3196-3207
[2]   Machine learning and the physical sciences [J].
Carleo, Giuseppe ;
Cirac, Ignacio ;
Cranmer, Kyle ;
Daudet, Laurent ;
Schuld, Maria ;
Tishby, Naftali ;
Vogt-Maranto, Leslie ;
Zdeborova, Lenka .
REVIEWS OF MODERN PHYSICS, 2019, 91 (04)
[3]   Dual-polarization programmable metasurface modulator for near-field information encoding and transmission [J].
Chen, Lei ;
Ma, Qian ;
Nie, Qian Fan ;
Hong, Qiao Ru ;
Cui, Hao Yang ;
Ruan, Ying ;
Cui, Tie Jun .
PHOTONICS RESEARCH, 2021, 9 (02) :116-124
[4]  
Chollet F., 2015, Keras
[5]   A Modified Efficient KNN Method for Antenna Optimization and Design [J].
Cui, Liangze ;
Zhang, Yao ;
Zhang, Runren ;
Liu, Qing Huo .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (10) :6858-6866
[6]   Information Metamaterial Systems [J].
Cui, Tie Jun ;
Li, Lianlin ;
Liu, Shuo ;
Ma, Qian ;
Zhang, Lei ;
Wan, Xiang ;
Jiang, Wei Xiang ;
Cheng, Qiang .
ISCIENCE, 2020, 23 (08)
[7]  
Fang W, 2020, IEEE T ELECTROMAGN C
[8]  
Goi E, 2020, HOLOGRAPHY DIFFRACTI, V1551, P55102
[9]   Perspective on photonic memristive neuromorphic computing [J].
Goi, Elena ;
Zhang, Qiming ;
Chen, Xi ;
Luan, Haitao ;
Gu, Min .
PHOTONIX, 2020, 1 (01)
[10]   Terahertz Metamaterials for Linear Polarization Conversion and Anomalous Refraction [J].
Grady, Nathaniel K. ;
Heyes, Jane E. ;
Chowdhury, Dibakar Roy ;
Zeng, Yong ;
Reiten, Matthew T. ;
Azad, Abul K. ;
Taylor, Antoinette J. ;
Dalvit, Diego A. R. ;
Chen, Hou-Tong .
SCIENCE, 2013, 340 (6138) :1304-1307