High action orbits for Tonelli Lagrangians and superlinear Hamiltonians on compact configuration spaces

被引:22
作者
Abbondandolo, Alberto
Figalli, Alessio
机构
[1] Univ Pisa, Dipartimento Matemat, I-56127 Pisa, Italy
[2] Scuola Normale Super Pisa, I-56126 Pisa, Italy
关键词
PERIODIC-SOLUTIONS; COTANGENT BUNDLES; SYSTEMS; INDEX; CURVES;
D O I
10.1016/j.jde.2006.10.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Multiplicity results for solutions of various boundary value problems are known for dynamical systems on compact configuration manifolds, given by Lagrangians or Hamiltonians which have quadratic growth in the velocities or in the momenta. Such results are based on the richness of the topology of the space of curves satisfying the given boundary conditions. In this note we show how these results can be extended to the classical setting of Tonelli Lagrangians (Lagrangians which are C-2 -convex and superlinear in the velocities), or to Hamiltonians which are superlinear in the momenta and have a coercive action integrand. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:626 / 653
页数:28
相关论文
共 16 条
[1]   On the Floer homology of cotangent bundles [J].
Abbondandolo, A ;
Schwarz, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (02) :254-316
[2]   PERIODIC-SOLUTIONS OF LAGRANGIAN SYSTEMS ON A COMPACT MANIFOLD [J].
BENCI, V .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1986, 63 (02) :135-161
[3]  
BUTTAZZO G, 1998, ONE DIMENSIONAL VARI
[4]  
Chang K, 1993, PROGR NONLINEAR DIFF, V6
[5]   Pseudoholomorphic curves and the shadowing lemma [J].
Cieliebak, K ;
Séré, E .
DUKE MATHEMATICAL JOURNAL, 1999, 99 (01) :41-73
[6]  
CIELIEBAK K, 1994, J MATH PURE APPL, V73, P251
[7]  
Fathi A., 2006, WEAK KAM THEOREM LAG
[8]   COHERENT ORIENTATIONS FOR PERIODIC ORBIT PROBLEMS IN SYMPLECTIC-GEOMETRY [J].
FLOER, A ;
HOFER, H .
MATHEMATISCHE ZEITSCHRIFT, 1993, 212 (01) :13-38
[9]  
HOFER H, 1994, SYMPLECTIC INVARIANT
[10]  
Long YM, 2000, MATH Z, V233, P443