An extension of a Y. C. Yang theorem

被引:3
作者
Vaida, Dragos [1 ]
机构
[1] Univ Bucharest, Fac Math & Informat, Bucharest, Romania
关键词
RINGS;
D O I
10.1007/s00500-017-2578-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The main purpose of this paper is to extend the theorem of Y. C. Yang stating that lattice-ordered skew fields are totally ordered iff squares are positive (Yang in Am Math Mon 113(3):266-267, 2006). The principal tools are an extension of a result of Teh concerning weak l-groups (Teh in Proc Edinb Math Soc 13(1):123-124, 1962) and a connection with Benado multilattices introduced in Benado (Bul Sti Sect Sti Mat Fiz 5:41-48, 1953); see also Benado (Czechoslov Math 5(3):308-344, 1955), Rudeanu and Vaida (J Mult-Valued Logic Soft Comput 20(3-4):265-307, 2013). Within the proofs below, the properties related to po-partial monoids or to po-semiring-like systems are stated such that to require each time only what is strictly needed for the stated result.
引用
收藏
页码:2507 / 2512
页数:6
相关论文
共 39 条
[1]  
Acad C.R., 1963, C R ACAD SCI PARIS, V257, P2222
[2]  
Acad C. R., 1963, C R ACAD SCI PARIS, V257, P2053
[3]  
[Anonymous], CONVEX EXTENSIONS PA
[4]  
Benado M, 1953, B SCI SECTION PHYS M, V5, P41
[5]  
Benado Mihail., 1955, CZECH MATH J, V5
[6]  
Bigard A., 1971, Lecture Notes in Mathematics, V608
[7]   PARTIAL ORDERS ON WORDS, MINIMAL ELEMENTS OF REGULAR LANGUAGES, AND STATE COMPLEXITY [J].
BIRGET, JC .
THEORETICAL COMPUTER SCIENCE, 1993, 119 (02) :267-291
[8]   Lattice-ordered groups [J].
Birkhoff, G .
ANNALS OF MATHEMATICS, 1942, 43 :298-331
[9]  
Birkhoff G., 1967, Amer. Math. Soc. Colloq. Publ., V25
[10]  
Birkhoff Garrett., 1956, An. Acad. Brasil. Ci, V28, P41