CLASSICAL AND MICROLOCAL ANALYSIS OF THE X-RAY TRANSFORM ON ANOSOV MANIFOLDS

被引:6
|
作者
Gouezel, Sebastien [1 ]
Lefeuvre, Thibault [2 ]
机构
[1] Univ Nantes, Lab Jean Leray, CNRS UMR 6629, Nantes, France
[2] Univ Paris Saclay, CNRS, Univ Paris Sud, Lab Math Orsay, Orsay, France
来源
ANALYSIS & PDE | 2021年 / 14卷 / 01期
基金
欧洲研究理事会;
关键词
Anosov flow; hyperbolic dynamical systems; x-ray transform; microlocal analysis; INVARIANT DISTRIBUTIONS; SPECTRAL RIGIDITY; REGULARITY;
D O I
10.2140/apde.2021.14.301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We complete the microlocal study of the geodesic x-ray transform on Riemannian manifolds with Anosov geodesic flow initiated by Guillarmou (J. Differential Geom. 105:2 (2017), 177-208) and pursued by Guillarmou and Lefeuvre in (Ann. of Math. (2) 190:1 (2019), 321-344). We prove new stability estimates and clarify some properties of the operator Pi(m)-the generalized x-ray transform. These estimates rely on a refined version of the LivSic theorem for Anosov flows, especially on a new quantitative finite-time LivSic theorem.
引用
收藏
页码:301 / 322
页数:22
相关论文
共 50 条
  • [31] X-ray transform and 3D Radon transform for ellipsoids and tetrahedra
    Zhu, Jiehua
    Lee, Seung Wook
    Ye, Yangbo
    Zhao, Shiying
    Wang, Ge
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2004, 12 (04) : 215 - 229
  • [32] Microlocal analysis of the Doppler transform on R3
    Ramaseshan, K
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2004, 10 (01) : 73 - 82
  • [33] Single Pixel X-ray Transform and Related Inverse Problems
    Lai, Ru-Yu
    Uhlmann, Gunther
    Zhai, Jian
    Zhou, Hanming
    SIAM JOURNAL ON IMAGING SCIENCES, 2022, 15 (04) : 1894 - 1909
  • [35] Fast parallel algorithms for the x-ray transform and its adjoint
    Gao, Hao
    MEDICAL PHYSICS, 2012, 39 (11) : 7110 - 7120
  • [36] CARLEMAN ESTIMATES FOR GEODESIC X-RAY TRANSFORMS
    Paternain, Gabriel P.
    Salo, Mikko
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2023, 56 (05): : 1339 - 1379
  • [37] Microlocal analysis for spherical Radon transform: two nonstandard problems
    Nguyen, Linh, V
    Pham, Tuan A.
    INVERSE PROBLEMS, 2019, 35 (07)
  • [38] Stability of the Non-abelian X-ray Transform in Dimension ≥ 3
    Bohr, Jan
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (11) : 11226 - 11269
  • [39] Admissible Complexes for the Projective X-ray Transform over a Finite Field
    Feldman, David, V
    Grinberg, Eric L.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2020, 64 (01) : 28 - 36
  • [40] ON THE RANGE OF THE X-RAY TRANSFORM OF SYMMETRIC TENSORS COMPACTLY SUPPORTED IN THE PLANE
    Sadiq, Kamran
    Tamasan, Alexandru
    INVERSE PROBLEMS AND IMAGING, 2022, : 660 - 685