We complete the microlocal study of the geodesic x-ray transform on Riemannian manifolds with Anosov geodesic flow initiated by Guillarmou (J. Differential Geom. 105:2 (2017), 177-208) and pursued by Guillarmou and Lefeuvre in (Ann. of Math. (2) 190:1 (2019), 321-344). We prove new stability estimates and clarify some properties of the operator Pi(m)-the generalized x-ray transform. These estimates rely on a refined version of the LivSic theorem for Anosov flows, especially on a new quantitative finite-time LivSic theorem.
机构:
Ecole Normale Super, DMA, 24 Rue Lhomond, F-75231 Paris, FranceEcole Normale Super, DMA, 24 Rue Lhomond, F-75231 Paris, France
Guillarmou, Colin
Paternain, Gabriel P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cambridge, Dept Pure Math & Math Stat, Cambridge CB3 0WB, EnglandEcole Normale Super, DMA, 24 Rue Lhomond, F-75231 Paris, France
Paternain, Gabriel P.
Salo, Mikko
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, FinlandEcole Normale Super, DMA, 24 Rue Lhomond, F-75231 Paris, France
Salo, Mikko
Uhlmann, Gunther
论文数: 0引用数: 0
h-index: 0
机构:
Univ Washington, Seattle, WA 98195 USA
Univ Helsinki, Helsinki, Finland
Hong Kong Univ Sci & Technol, Inst Adv Study, Hong Kong, Hong Kong, Peoples R ChinaEcole Normale Super, DMA, 24 Rue Lhomond, F-75231 Paris, France