Underevaluated Solvent Effects in Electrocatalytic CO2 Reduction by FeIII Chloride Tetrakis(pentafluorophenyl)porphyrin

被引:25
作者
Zhao, Bin [1 ]
Lei, Haitao [1 ]
Wang, Ni [1 ]
Xu, Gelun [1 ]
Zhang, Wei [1 ]
Cao, Rui [1 ]
机构
[1] Shaanxi Normal Univ, Key Lab Appl Surface & Colloid Chem, Minist Educ, Sch Chem & Chem Engn, Xian 710119, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; reduction; CO2-to-CO conversion; electrocatalysis; Fe porphyrin; solvent effect; CO2-TO-CO ELECTROCHEMICAL CONVERSION; MOLECULAR CATALYSIS; CARBON-DIOXIDE; ORGANIC FRAMEWORKS; OXYGEN REDUCTION; EFFICIENT; IRON; PROTON; PORPHYRIN; HYDROGEN;
D O I
10.1002/chem.201903064
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Fe-III chloride tetrakis(pentafluorophenyl)porphyrin (1) is known to have poor electrocatalytic activity for the CO2-to-CO conversion in dimethylformamide. In this work, we re-examined Fe porphyrin 1 as a CO2 reduction catalyst in various solvents. Our results show that 1 displays fairly high electrocatalytic CO2-to-CO activity in acetonitrile with a turnover frequency (TOF) up to 4.2x10(4) s(-1). On the other hand, 1 shows a modest activity in propylene carbonate, and is inefficient to catalyze CO2 reduction in benzonitrile, dimethylformamide, and tetrahydrofuran. Several solvent effects were considered, but none of these effects alone can explain the observed large activity difference of 1 for CO2 reduction in these solvents. Based on the results, it is suggested that more care should be paid when comparing different CO2 reduction catalysts because solvent effects are significant and are underevaluated.
引用
收藏
页码:4007 / 4012
页数:6
相关论文
共 50 条
[41]   Mechanistic insight into electrocatalytic CO2 reduction to formate by the iron(I) porphyrin complex: A DFT study [J].
Wang, Yaqing ;
Lai, Wenzhen .
MOLECULAR CATALYSIS, 2024, 566
[42]   Enhancement of Electrocatalytic CO2 Reduction to Methane by CoTMPyP when Hosted in a 3D Covalent Graphene Framework [J].
Bochlin, Yair ;
Ezuz, Lior ;
Kadosh, Yanir ;
Benjamin, Daniel ;
Mordekovitz, Yuval ;
Hayun, Shmuel ;
Korin, Eli ;
Bettelheim, Armand .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (09) :10033-10041
[43]   Metal-Based Aerogels Catalysts for Electrocatalytic CO2 Reduction [J].
Wang, Guangtao ;
Li, Xiang ;
Yang, Xiaohan ;
Liu, Li-Xia ;
Cai, Yanming ;
Wu, Yajun ;
Wang, Shengyan ;
Li, Huan ;
Zhou, Yuanzhen ;
Wang, Yuanyuan ;
Zhou, Yang .
CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (64)
[44]   Electrocatalytic CO2 Reduction by Molecular Ruthenium Complexes with Polypyridyl Ligands [J].
Huang, Yan ;
He, Huixin ;
Liu, Jiale ;
Thummel, Randolph P. ;
Tong, Lianpeng .
CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (14)
[45]   Recent Progress in Surface and Interface Engineering for Electrocatalytic CO2 Reduction [J].
Hu, Xiaokang ;
Hu, Jiuyi ;
Zheng, Shaohui ;
Fan, Yun ;
Li, Hongfeng ;
Zhang, Suoying ;
Liu, Wenjing ;
Zha, Baoli ;
Huo, Fengwei ;
Saleem, Faisal .
CHEMISTRY-AN ASIAN JOURNAL, 2022, 17 (24)
[46]   Do Cu Substrates Participate in Bi Electrocatalytic CO2 Reduction? [J].
Li, Menglu ;
Li, Wenbo ;
Song, Wentao ;
Wang, Cheng ;
Yao, Yingfang ;
Wu, Congping ;
Luo, Wenjun ;
Zou, Zhigang .
CHEMNANOMAT, 2021, 7 (02) :128-133
[47]   CO2 or Carbonates - What is the Active Species in Electrochemical CO2 Reduction over Fe-Porphyrin? [J].
Khakpour, Reza ;
Lindberg, Daniel ;
Laasonen, Kari ;
Busch, Michael .
CHEMCATCHEM, 2023, 15 (06)
[48]   Electrocatalytic CO2 Reduction with Re-Based Spiro Bipyridine Complexes: Effects of the Local Proton in the Second Coordination Sphere† [J].
Yang, Yong ;
Zhang, Ziyun ;
Zhang, Zhenyu ;
Tang, Chao ;
Chang, Xiaoyong ;
Duan, Lele .
CHINESE JOURNAL OF CHEMISTRY, 2021, 39 (05) :1281-1287
[49]   Electrocatalytic reduction of CO2 to CO in the presence of a mononuclear polypyridyl ruthenium(II) complex [J].
Daryanavard, Marzieh ;
Hadadzadeh, Hassan ;
Weil, Matthias ;
Farrokhpour, Hossein .
JOURNAL OF CO2 UTILIZATION, 2017, 17 :80-89
[50]   Different Pathways for CO2 Electrocatalytic Reduction by Confined CoTMPyP in Electrodeposited Reduced Graphene Oxide [J].
Bochlin, Yair ;
Korin, Eli ;
Bettelheim, Armand .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (12) :8434-8440