Prediction of etching rate of alumino-silicate glass by RSM and ANN

被引:0
|
作者
Ting, H. T. [1 ]
Abou-El-Hossein, K. A. [2 ]
Chua, H. B. [1 ]
机构
[1] Curtin Univ Technol, Dept Mech Engn, Miri, Sarawak 68006, Australia
[2] Nelson Mandela Metropolitan Univ, Dept Mechatron, ZA-6031 Port Elizabeth, South Africa
来源
JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH | 2009年 / 68卷 / 11期
关键词
Alumino-silicate glass; ANN; Etching rate; RSM; SURFACE METHODOLOGY RSM; NEURAL-NETWORK; OPTIMIZATION; WAFER;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, response surface methodology (RSM) and artificial neural network (ANN) were applied to predict material removal rate in chemical etching process of alumino-silicate glass (SiO2 57/Al2O3 36/CaO/MgO/BaO). 2(k) Factorial design was performed to evaluate linearity condition among process parameters. Analysis of variance (ANOVA) was performed and quadratic model was found most significant for data values of process parameters. New models were able to predict etching rate of alumino-silicate glass, with a great confidence. Input parameters analyzed were temperature, etching period and type of setup with and without-condensation.
引用
收藏
页码:920 / 924
页数:5
相关论文
共 50 条
  • [21] Preparation of barium alumino-silicate based ceramsite from bauxite, coal gangue and barite: Physical properties, microstructure, and γ-ray shielding behavior
    Zhang, Gaozhan
    Wang, Mengru
    Yang, Jun
    Wu, Mingming
    Ding, Qingjun
    Zhu, Jiahao
    Liu, Kai
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 437
  • [22] A Novel Hybrid RSM-ANN Model for Surface Roughness Prediction in Turning of Al 6061 Alloy
    Kumar, Vivek
    Guleria, Vikrant
    Kumar, Sunil
    JOURNAL OF ADVANCED MANUFACTURING SYSTEMS, 2024, 23 (04) : 969 - 984
  • [23] Modeling and prediction of COD and turbidity removals from dairy wastewaters by Fenton process using RSM and ANN
    Hadjira Kermet-Said
    Nadji Moulai-Mostefa
    Biomass Conversion and Biorefinery, 2024, 14 : 8419 - 8431
  • [24] Prediction of diameter in blended nanofibers of polycaprolactone-gelatin using ANN and RSM
    Khatti, Tahere
    Naderi-Manesh, Hossein
    Kalantar, Seyed Mehdi
    FIBERS AND POLYMERS, 2017, 18 (12) : 2368 - 2378
  • [25] Prediction of mechanical behavior of epoxy polymer using Artificial Neural Networks (ANN) and Response Surface Methodology (RSM)
    Saada, Khalissa
    Amroune, Salah
    Zaoui, Moussa
    FRATTURA ED INTEGRITA STRUTTURALE-FRACTURE AND STRUCTURAL INTEGRITY, 2023, 17 (66): : 191 - 206
  • [26] Prediction and optimization of the bearing capacity of strip footing resting on soft soil improved with stone columns using RSM, ANN, and multi-objective GA
    Lafifi, Brahim
    Hamrouni, Adam
    Khoualdia, Tarek
    Gheris, Abderrahim
    Rouaiguia, Ammar
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2024, 9 (05)
  • [27] Contact resistance prediction of zirconium joints welded by small scale resistance spot welding using ANN and RSM models
    Al-Sabur, Raheem
    Slobodyan, Mikhail
    Chhalotre, Sanjay
    Verma, Manoj
    MATERIALS TODAY-PROCEEDINGS, 2021, 47 : 5907 - 5911
  • [28] Strength Prediction of Aluminum-Stainless Steel-Pulsed TIG Welding-Brazing Joints with RSM and ANN
    He, Huan
    Yang, Chunli
    Chen, Zhe
    Lin, Sanbao
    Fan, Chenglei
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2014, 27 (06) : 1012 - 1017
  • [29] Method for Determining the Etching Rate in Phosphate Glass Detectors
    Burtebayev, N.
    Argynova, K.
    Chernyavskiy, M. M.
    Gippius, A. A.
    Kalinina, G. V.
    Konovalova, N. S.
    Kvochkina, T. N.
    Nassurlla, M.
    Okateva, N. M.
    Pan, A. N.
    Polukhina, N. G.
    Sadykov, Zh. T.
    Shchedrina, T. V.
    Starkov, N. I.
    Starkova, E. N.
    Zasavitskii, I. I.
    BULLETIN OF THE LEBEDEV PHYSICS INSTITUTE, 2022, 49 (10) : 350 - 355
  • [30] Method for Determining the Etching Rate in Phosphate Glass Detectors
    N. Burtebayev
    K. Argynova
    M. M. Chernyavskiy
    A. A. Gippius
    G. V. Kalinina
    N. S. Konovalova
    T. N. Kvochkina
    M. Nassurlla
    N. M. Okateva
    A. N. Pan
    N. G. Polukhina
    Zh. T. Sadykov
    T. V. Shchedrina
    N. I. Starkov
    E. N. Starkova
    I. I. Zasavitskii
    Bulletin of the Lebedev Physics Institute, 2022, 49 : 350 - 355