Machine learning based methods for software fault prediction: A survey

被引:68
|
作者
Pandey, Sushant Kumar [1 ]
Mishra, Ravi Bhushan [1 ]
Tripathi, Anil Kumar [1 ]
机构
[1] Indian Inst Technol BHU, Dept Comp Sci & Engn, Varanasi, Uttar Pradesh, India
关键词
Machine learning; Fault proneness; Statistical techniques; Fault prediction; Systematic literature review; DEFECT PREDICTION; EMPIRICAL-ANALYSIS; FEATURE-SELECTION; MODEL; QUALITY; METRICS; CLASSIFICATION; PRONENESS; FRAMEWORK; REGRESSION;
D O I
10.1016/j.eswa.2021.114595
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Several prediction approaches are contained in the arena of software engineering such as prediction of effort, security, quality, fault, cost, and re-usability. All these prediction approaches are still in the rudimentary phase. Experiments and research are conducting to build a robust model. Software Fault Prediction (SFP) is the process to develop the model which can be utilized by software practitioners to detect faulty classes/module before the testing phase. Prediction of defective modules before the testing phase will help the software development team leader to allocate resources more optimally and it reduces the testing effort. In this article, we present a Systematic Literature Review (SLR) of various studies from 1990 to June 2019 towards applying machine learning and statistical method over software fault prediction. We have cited 208 research articles, in which we studied 154 relevant articles. We investigated the competence of machine learning in existing datasets and research projects. To the best of our knowledge, the existing SLR considered only a few parameters over SFP?s performance, and they partially examined the various threats and challenges of SFP techniques. In this article, we aggregated those parameters and analyzed them accordingly, and we also illustrate the different challenges in the SFP domain. We also compared the performance between machine learning and statistical techniques based on SFP models. Our empirical study and analysis demonstrate that the prediction ability of machine learning techniques for classifying class/module as fault/non-fault prone is better than classical statistical models. The performance of machine learning-based SFP methods over fault susceptibility is better than conventional statistical purposes. The empirical evidence of our survey reports that the machine learning techniques have the capability, which can be used to identify fault proneness, and able to form well-generalized result. We have also investigated a few challenges in fault prediction discipline, i.e., quality of data, over-fitting of models, and class imbalance problem. We have also summarized 154 articles in a tabular form for quick identification.
引用
收藏
页数:35
相关论文
共 50 条
  • [21] A hybrid approach to software fault prediction using genetic programming and ensemble learning methods
    Sahu, Satya Prakash
    Reddy, B. Ramachandra
    Mukherjee, Dev
    Shyamla, D. M.
    Verma, Bhim Singh
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2022, 13 (04) : 1746 - 1760
  • [22] Prediction of software quality with Machine Learning-Based ensemble methods
    Ceran A.A.
    Ar Y.
    Tanrıöver Ö.Ö.
    Seyrek Ceran S.
    Materials Today: Proceedings, 2023, 81 : 18 - 25
  • [23] Tree-based Machine Learning Methods for Survey Research
    Kern, Christoph
    Klausch, Thomas
    Kreuter, Frauke
    SURVEY RESEARCH METHODS, 2019, 13 (01): : 73 - 93
  • [24] Machine Learning-Based Software Defect Prediction for Mobile Applications: A Systematic Literature Review
    Jorayeva, Manzura
    Akbulut, Akhan
    Catal, Cagatay
    Mishra, Alok
    SENSORS, 2022, 22 (07)
  • [25] A survey on machine learning methods for churn prediction
    Louis Geiler
    Séverine Affeldt
    Mohamed Nadif
    International Journal of Data Science and Analytics, 2022, 14 : 217 - 242
  • [26] Linear and non-linear bayesian regression methods for software fault prediction
    Singh, Rohit
    Rathore, Santosh Singh
    INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2022, 13 (04) : 1864 - 1884
  • [27] A hybrid machine learning model based on ensemble methods for devices fault prediction in the wood industry
    Dahesh, Arezoo
    Tavakkoli-Moghaddam, Reza
    Wassan, Niaz
    Tajally, AmirReza
    Daneshi, Zahra
    Erfani-Jazi, Aseman
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 249
  • [28] Applying machine learning to software fault-proneness prediction
    Gondra, Iker
    JOURNAL OF SYSTEMS AND SOFTWARE, 2008, 81 (02) : 186 - 195
  • [29] Software fault prediction using deep learning techniques
    Batool, Iqra
    Khan, Tamim Ahmed
    SOFTWARE QUALITY JOURNAL, 2023, 31 (04) : 1241 - 1280
  • [30] Software defect prediction based on kernel PCA and weighted extreme learning machine
    Xu, Zhou
    Liu, Jin
    Luo, Xiapu
    Yang, Zijiang
    Zhang, Yifeng
    Yuan, Peipei
    Tang, Yutian
    Zhang, Tao
    INFORMATION AND SOFTWARE TECHNOLOGY, 2019, 106 : 182 - 200