Attractors of non-linear Hamiltonian one-dimensional wave equations

被引:7
作者
Komech, AI [1 ]
机构
[1] Moscow State Univ, Moscow, Russia
关键词
D O I
10.1070/RM2000v055n01ABEH000249
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A theory is constructed for attractors of all finite-energy solutions of conservative one-dimensional wave equations on the whole real line. The attractor of a non-degenerate (that is, generic) equation is the set of all stationary solutions. Each finite-energy solution converges as t --> +/-infinity to this attractor in the Frechet topology determined by local energy seminorms. The attraction is caused by energy dissipation at infinity. Our results provide a mathematical model of Bohr transitions ('quantum jumps') between stationary states in quantum systems.
引用
收藏
页码:43 / 92
页数:50
相关论文
共 67 条
[1]  
[Anonymous], 1988, APPL MATH SCI
[2]  
[Anonymous], J MATH SCI
[3]  
[Anonymous], 1976, LECT NOTES MATH
[4]  
Babin A. V., 1992, STUD MATH APPL, V25
[5]   EXISTENCE OF EXCITED-STATES FOR A NONLINEAR DIRAC FIELD [J].
BALABANE, M ;
CAZENAVE, T ;
DOUADY, A ;
MERLE, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 119 (01) :153-176
[6]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[7]   On the Constitution of Atoms and Molecules [J].
Bohr, N. .
PHILOSOPHICAL MAGAZINE, 1913, 26 (151) :1-25
[8]  
Buslaev V., 1993, St. Petersburg Math. J., V4, P1111
[9]  
Buslaev V.S., 1995, Adv. Math. Sci, V22, P75
[10]  
BUSLAEV VS, 1992, ASTERISQUE, P49