Inverse fixed points of sequences of mappings

被引:0
|
作者
Moorthy, C. Ganesa [1 ]
Raj, S. Iruthaya [2 ]
机构
[1] Alagappa Univ, Dept Math, Karaikkudi 630003, Tamil Nadu, India
[2] Loyola Coll Autonomous, PG & Res Dept Math, Chennai 600034, Tamil Nadu, India
关键词
Fixed point; Hausdorff metric;
D O I
10.1142/S1793557121500273
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If fn : X -> X, n = 1, 2, horizontal ellipsis , is a sequence of mappings on a metric space (X,d), a point x in X is called an inverse fixed point of the sequence (f(n)), if inf{d(x,y) : y is an element of f(n)(-1)(x)} tends to zero as n tends to infinity. This definition is proposed and studied in this paper to obtain a few fixed point results.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Sequences of almost contractions and fixed points
    Pacurar, Madalina
    CARPATHIAN JOURNAL OF MATHEMATICS, 2008, 24 (02) : 101 - 109
  • [22] Iterative methods for fixed points and zero points of nonlinear mappings with applications
    Liu, Liya
    Qin, Xiaolong
    Agarwal, Ravi P.
    OPTIMIZATION, 2021, 70 (04) : 693 - 713
  • [23] ON THE EXISTENCE OF (η, ζ)-FIXED POINTS AND (η, ζ)-BEST PROXIMITY POINTS FOR WARDOWSKI TYPE MAPPINGS
    Ali, Muhammad Usman
    Pitea, Ariana
    Stanciu, Monica
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (04) : 713 - 725
  • [24] Fixed points and coincidences of mappings of partially ordered sets
    Fomenko, T. N.
    Podoprikhin, D. A.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2016, 18 (04) : 823 - 842
  • [25] Fixed points and coincidences of mappings of partially ordered sets
    T. N. Fomenko
    D. A. Podoprikhin
    Journal of Fixed Point Theory and Applications, 2016, 18 : 823 - 842
  • [26] SOLUTIONS OF VARIATIONAL INEQUALITIES ON FIXED POINTS OF NONEXPANSIVE MAPPINGS
    Piri, H.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2013, 39 (04) : 743 - 764
  • [27] Hybrid Iteration Method for Fixed Points of Nonexpansive Mappings
    Wang, L.
    Yao, S. S.
    THAI JOURNAL OF MATHEMATICS, 2007, 5 (02): : 183 - 190
  • [28] Fixed Points for (α, β)-Admissible Mappings via Simulation Functions
    Dewangan, Archana
    Dubey, Anil Kumar
    Pandey, M. D.
    Dubey, R. P.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2021, 12 (04): : 1101 - 1111
  • [30] On the fixed points of nonexpansive mappings in modular metric spaces
    Afrah AN Abdou
    Mohamed A Khamsi
    Fixed Point Theory and Applications, 2013