An extension of Zeilberger's fast algorithm to general holonomic functions

被引:107
作者
Chyzak, F [1 ]
机构
[1] INRIA Rocquencourt, Project Algorithmes, F-78153 Le Chesnay, France
关键词
delta-finite functions; holonomic functions; symbolic integration; symbolic summation; Zeilberger's algorithm;
D O I
10.1016/S0012-365X(99)00259-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend Zeilberger's fast algorithm for definite hypergeometric summation to non-hypergeometric holonomic sequences. The algorithm generalizes to the differential case and to q-calculus as well. Its theoretical justification is based on a description by linear operators and on the theory of holonomy. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:115 / 134
页数:20
相关论文
共 34 条
[1]  
Abramov S.A., 1996, P INT C COMP MOD COM, P16
[2]  
ABRAMOV SA, 1989, J COMPUTATIONAL MATH, V29, P1611
[3]  
ABRAMOV SA, 1995, SYMBOLIC ALGEBRAIC C, P290
[4]  
ABRAMOV SA, 1995, SYMBOLIC ALGEBRAIC C, P285
[5]   THE METHOD OF DIFFERENTIATING UNDER THE INTEGRAL SIGN [J].
ALMKVIST, G ;
ZEILBERGER, D .
JOURNAL OF SYMBOLIC COMPUTATION, 1990, 10 (06) :571-591
[6]   AN ALGORITHM FOR COMPUTING A COMPANION BLOCK DIAGONAL FORM FOR A SYSTEM OF LINEAR-DIFFERENTIAL EQUATIONS [J].
BARKATOU, MA .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 1993, 4 (03) :185-195
[7]  
BARKATOU MA, 1997, COMMUNICATION
[8]  
Bernstein I.N, 1971, FUNKC ANAL PRILOZH, V5, P1, DOI 10.1007/BF01075841
[9]  
Bernstein I.N., 1972, Funkcional. Anal. i Prilozen., V6, P26
[10]  
BRONSTEIN M, 1996, THEORET COMPUT SCI, V157