Existence of critical points for noncoercive functionals with critical Sobolev exponent

被引:2
作者
Li, Zhouxin [1 ]
Yuan, Xiang [1 ]
Zhang, Qi [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
Critical points; noncoercive functional; critical Sobolev exponent; elliptic equations;
D O I
10.1080/00036811.2021.1892078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following noncoercive functional with the critical Sobolev exponent I(u) = 1/2 integral(Omega)1/(1 + vertical bar u vertical bar)(2 alpha) vertical bar del u vertical bar(2)dx - lambda/q integral(Omega) vertical bar u vertical bar(q)dx - 1/2*(1 - alpha) integral(Omega) vertical bar u vertical bar(2)* (1- alpha) dx, where lambda > 0, 0 < alpha < (N + 2)/2N, 2 < q < 2* (1 - alpha), 2* = 2N/(N - 2). We prove the existence of a nontrivial critical point via the mountain pass theorem and the multiplicity via Clark's theorem.
引用
收藏
页码:5358 / 5375
页数:18
相关论文
共 24 条
[1]   MULTIPLICITY OF SOLUTIONS FOR ELLIPTIC PROBLEMS WITH CRITICAL EXPONENT OR WITH A NONSYMMETRIC TERM [J].
AZORERO, JG ;
ALONSO, IP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 323 (02) :877-895
[2]  
Boccardo, 1999, NONLINEAR DIFFER EQU, V6
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]  
Canino, 1995, TOPOL METHOD NONL AN, V6
[5]  
Chabrowski, 1995, DIFFER INTEGRAL EQU, V8
[6]   VARIANT OF LUSTERNIK-SCHNIRELMAN THEORY [J].
CLARK, DC .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1972, 22 (01) :65-&
[7]  
Gazzola, 2000, COMMUN PDES, V25
[8]  
Gazzola, 1996, TOPOL METHOD NONL AN, V8
[9]   Existence of nontrivial solutions for quasilinear elliptic equations at critical growth [J].
Li, Zhouxin .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (01) :76-87
[10]  
LIONS PL, 1984, ANN I H POINCARE-AN, V1, P223