Minimum size tree-decompositions

被引:2
|
作者
Li, Bi [3 ]
Moataz, Fatima Zahra [1 ,2 ]
Nisse, Nicolas [1 ,2 ]
Suchan, Karol [4 ,5 ]
机构
[1] INRIA, Rennes, France
[2] Univ Nice Sophia Antipolis, CNRS, UMR 7271, I3S, Sophia Antipolis, France
[3] Xidian Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
[4] Univ Adolfo Ibanez, Santiago, Chile
[5] AGH Univ Sci & Technol, Krakow, Poland
关键词
Tree-decomposition; Treewidth; NP-hard; PARTIAL; 3-TREES; RECOGNITION; COMPLEXITY; TREEWIDTH; GRAPHS; WIDTH;
D O I
10.1016/j.dam.2017.01.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study in this paper the problem of computing a tree-decomposition of a graph with width at most k and minimum number of bags. More precisely, we focus on the following problem: given a fixed k >= 1, what is the complexity of computing a tree-decomposition of width at most k with minimum number of bags in the class of graphs with treewidth at most k? We prove that the problem is NP-complete for any fixed k >= 4 and polynomial for k <= 2; for k = 3, we show that it is polynomial in the class of trees and 2-connected outerplanar graphs. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 127
页数:19
相关论文
共 50 条
  • [31] Speeding Up Dynamic Programming with Representative Sets: An Experimental Evaluation of Algorithms for Steiner Tree on Tree Decompositions
    Fafianie, Stefan
    Bodlaender, Hans L.
    Nederlof, Jesper
    ALGORITHMICA, 2015, 71 (03) : 636 - 660
  • [32] Optimal root choice for parallel processing of tree decompositions
    Li Y.
    Nie Z.
    Lu Y.
    International Journal of Intelligent Information and Database Systems, 2010, 4 (01) : 60 - 80
  • [33] Approximate tree decompositions of planar graphs in linear time
    Kammer, Frank
    Tholey, Torsten
    THEORETICAL COMPUTER SCIENCE, 2016, 645 : 60 - 90
  • [34] Tree decompositions with small cost
    Bodlaender, HL
    Fomin, FV
    DISCRETE APPLIED MATHEMATICS, 2005, 145 (02) : 143 - 154
  • [35] A note on root choice for parallel processing of tree decompositions
    Li, Yueping
    Lu, Yunting
    AGENT AND MULTI-AGENT SYSTEMS: TECHNOLOGIES AND APPLICATIONS, PROCEEDINGS, 2008, 4953 : 713 - +
  • [36] A NOTE ON BOUNDS FOR THE COP NUMBER USING TREE DECOMPOSITIONS
    Bonato, Anthony
    Clarke, Nancy E.
    Finbow, Stephen
    Fitzpatrick, Shannon
    Messinger, Margaret-Ellen
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2014, 9 (02) : 50 - 56
  • [37] Multicut Algorithms via Tree Decompositions
    Pichler, Reinhard
    Ruemmele, Stefan
    Woltran, Stefan
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2010, 6078 : 167 - 179
  • [38] Orthogonal Tree Decompositions of Graphs (vol 32, pg 839, 2018)
    Dujmovic, Vida
    Joret, Gwenael
    Morin, Pat
    Norin, Sergey
    Wood, David R.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (04) : 3003 - 3004
  • [39] Induced subgraphs and tree decompositions V. one neighbor in a hole
    Abrishami, Tara
    Alecu, Bogdan
    Chudnovsky, Maria
    Hajebi, Sepehr
    Spirkl, Sophie
    Vuskovic, Kristina
    JOURNAL OF GRAPH THEORY, 2024, 105 (04) : 542 - 561
  • [40] TREE DECOMPOSITIONS OF MULTIGRAPHS
    SHI Minyong(Department of Computer Science and Technology
    SystemsScienceandMathematicalSciences, 1999, (03) : 231 - 237