Minimum size tree-decompositions

被引:2
|
作者
Li, Bi [3 ]
Moataz, Fatima Zahra [1 ,2 ]
Nisse, Nicolas [1 ,2 ]
Suchan, Karol [4 ,5 ]
机构
[1] INRIA, Rennes, France
[2] Univ Nice Sophia Antipolis, CNRS, UMR 7271, I3S, Sophia Antipolis, France
[3] Xidian Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
[4] Univ Adolfo Ibanez, Santiago, Chile
[5] AGH Univ Sci & Technol, Krakow, Poland
关键词
Tree-decomposition; Treewidth; NP-hard; PARTIAL; 3-TREES; RECOGNITION; COMPLEXITY; TREEWIDTH; GRAPHS; WIDTH;
D O I
10.1016/j.dam.2017.01.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study in this paper the problem of computing a tree-decomposition of a graph with width at most k and minimum number of bags. More precisely, we focus on the following problem: given a fixed k >= 1, what is the complexity of computing a tree-decomposition of width at most k with minimum number of bags in the class of graphs with treewidth at most k? We prove that the problem is NP-complete for any fixed k >= 4 and polynomial for k <= 2; for k = 3, we show that it is polynomial in the class of trees and 2-connected outerplanar graphs. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 127
页数:19
相关论文
共 50 条
  • [21] Canonical tree-decompositions of a graph that display its k-blocks
    Carmesin, Johannes
    Gollin, J. Pascal
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 : 1 - 20
  • [22] Canonical tree-decompositions of finite graphs I. Existence and algorithms
    Carmesin, J.
    Diestel, R.
    Hamann, M.
    Hundertmark, F.
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 116 : 1 - 24
  • [23] ORTHOGONAL TREE DECOMPOSITIONS OF GRAPHS
    Dujmovic, Vida
    Joret, Gwenael
    Morin, Pat
    Norin, Sergey
    Wood, David R.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (02) : 839 - 863
  • [24] Semi-nice tree-decompositions: The best of branchwidth, treewidth and pathwidth with one algorithm
    Dorn, Frederic
    Telle, Jan Arne
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (12) : 2737 - 2746
  • [25] Optimizing Tree Decompositions in MSO
    Bojanczyk, Mikolaj
    Pilipczuk, Michal
    34TH SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2017), 2017, 66
  • [26] OPTIMIZING TREE DECOMPOSITIONS IN MSO
    Bojańczyk M.
    Pilipczuk M.
    Logical Methods in Computer Science, 2022, 18 (01):
  • [27] ToTo: An open database for computation, storage and retrieval of tree decompositions
    van Wersch, Rim
    Kelk, Steven
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 389 - 393
  • [28] Decoding Tree Decompositions from Permutations
    da Silva, Samuel Eduardo
    Souza, Ueverton S.
    LATIN 2024: THEORETICAL INFORMATICS, PT I, 2024, 14578 : 19 - 34
  • [29] On tree decompositions whose trees are minors
    Blanco, Pablo
    Cook, Linda
    Hatzel, Meike
    Hilaire, Claire
    Illingworth, Freddie
    McCarty, Rose
    JOURNAL OF GRAPH THEORY, 2024, 106 (02) : 296 - 306
  • [30] The complexity of minimum-length path decompositions
    Dereniowski, Dariusz
    Kubiak, Wieslaw
    Zwols, Yori
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2015, 81 (08) : 1715 - 1747