Minimum size tree-decompositions

被引:2
作者
Li, Bi [3 ]
Moataz, Fatima Zahra [1 ,2 ]
Nisse, Nicolas [1 ,2 ]
Suchan, Karol [4 ,5 ]
机构
[1] INRIA, Rennes, France
[2] Univ Nice Sophia Antipolis, CNRS, UMR 7271, I3S, Sophia Antipolis, France
[3] Xidian Univ, Sch Math & Stat, Xian, Shaanxi, Peoples R China
[4] Univ Adolfo Ibanez, Santiago, Chile
[5] AGH Univ Sci & Technol, Krakow, Poland
关键词
Tree-decomposition; Treewidth; NP-hard; PARTIAL; 3-TREES; RECOGNITION; COMPLEXITY; TREEWIDTH; GRAPHS; WIDTH;
D O I
10.1016/j.dam.2017.01.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study in this paper the problem of computing a tree-decomposition of a graph with width at most k and minimum number of bags. More precisely, we focus on the following problem: given a fixed k >= 1, what is the complexity of computing a tree-decomposition of width at most k with minimum number of bags in the class of graphs with treewidth at most k? We prove that the problem is NP-complete for any fixed k >= 4 and polynomial for k <= 2; for k = 3, we show that it is polynomial in the class of trees and 2-connected outerplanar graphs. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:109 / 127
页数:19
相关论文
共 18 条
[1]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[2]   CHARACTERIZATION AND RECOGNITION OF PARTIAL 3-TREES [J].
ARNBORG, S ;
PROSKUROWSKI, A .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1986, 7 (02) :305-314
[3]   COMPLEXITY OF FINDING EMBEDDINGS IN A K-TREE [J].
ARNBORG, S ;
CORNEIL, DG ;
PROSKUROWSKI, A .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1987, 8 (02) :277-284
[4]   A ckn 5-APPROXIMATION ALGORITHM FOR TREEWIDTH [J].
Bodlaender, Hans L. ;
Drange, Pal Gronas ;
Dregi, Markus S. ;
Fomin, Fedor V. ;
Lokshtanov, Daniel ;
Pilipczuk, Micha L. .
SIAM JOURNAL ON COMPUTING, 2016, 45 (02) :317-378
[5]   Subexponential Time Algorithms for Finding Small Tree and Path Decompositions [J].
Bodlaender, Hans L. ;
Nederlof, Jesper .
ALGORITHMS - ESA 2015, 2015, 9294 :179-190
[6]   Treewidth computations II. Lower bounds [J].
Bodlaender, Hans L. ;
Koster, Arie M. C. A. .
INFORMATION AND COMPUTATION, 2011, 209 (07) :1103-1119
[7]   A linear-time ie algorithm for finding three-decompositions of small treewidth [J].
Bodlaender, HL .
SIAM JOURNAL ON COMPUTING, 1996, 25 (06) :1305-1317
[8]   THE MONADIC 2ND-ORDER LOGIC OF GRAPHS .1. RECOGNIZABLE SETS OF FINITE GRAPHS [J].
COURCELLE, B .
INFORMATION AND COMPUTATION, 1990, 85 (01) :12-75
[9]   The bidimensionality theory and its algorithmic applications [J].
Demaine, Erik D. ;
Hajiaghayi, MohammadTaghi .
COMPUTER JOURNAL, 2008, 51 (03) :292-302
[10]   The complexity of minimum-length path decompositions [J].
Dereniowski, Dariusz ;
Kubiak, Wieslaw ;
Zwols, Yori .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2015, 81 (08) :1715-1747