A converse to the Schwarz lemma for planar harmonic maps

被引:2
作者
Brevig, Ole Fredrik [1 ]
Ortega-Cerda, Joaquim [2 ,3 ]
Seip, Kristian [4 ]
机构
[1] Univ Oslo, Dept Math, N-0851 Oslo, Norway
[2] Univ Barcelona, Dept Matemat & Informat, Gran Via 585, Barcelona 08007, Spain
[3] Barcelona Grad Sch Math, Gran Via 585, Barcelona 08007, Spain
[4] Norwegian Univ Sci & Technol NTNU, Dept Math Sci, NO-7491 Trondheim, Norway
关键词
Hardy spaces; Planar harmonic maps; Schwarz lemma;
D O I
10.1016/j.jmaa.2020.124908
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A sharp version of a recent inequality of Kovalev and Yang on the ratio of the (H-1)* and H-4 norms for certain polynomials is obtained. The inequality is applied to establish a sharp and tractable sufficient condition for the Wirtinger derivatives at the origin for harmonic self-maps of the unit disc which fix the origin. (C) 2020 The Author(s). Published by Elsevier Inc.
引用
收藏
页数:10
相关论文
共 7 条
[1]   Linear functions and duality on the infinite polytorus [J].
Brevig, Ole Fredrik .
COLLECTANEA MATHEMATICA, 2019, 70 (03) :493-500
[2]   CONTRACTIVE INEQUALITIES FOR HARDY SPACES [J].
Brevig, Ole Fredrik ;
Ortega-Cerda, Joaquim ;
Seip, Kristian ;
Zhao, Jing .
FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2018, 59 (01) :41-56
[3]  
Duren P., 1970, Pure and Applied Mathematics, V38
[4]  
Duren Peter, 2012, PURE APPL UNDERGRADU, V17
[5]   Near-isometric duality of Hardy norms with applications to harmonic mappings [J].
Kovalev, Leonid, V ;
Yang, Xuerui .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 487 (02)
[6]   L∞ to Lp constants for Riesz projections [J].
Marzo, Jordi ;
Seip, Kristian .
BULLETIN DES SCIENCES MATHEMATIQUES, 2011, 135 (03) :324-331
[7]  
Rudin W., 1969, FUNCTION THEORY POLY