Numerical Validation of a Boost Converter Controlled by a Quasi-Sliding Mode Control Technique with Bifurcation Diagrams

被引:6
作者
Casanova Trujillo, Simeon [1 ]
Candelo-Becerra, John E. [2 ]
Hoyos, Fredy E. [2 ]
机构
[1] Univ Nacl Colombia, Sede Manizales, Grp Invest Calculo Cient & Modelamiento Matemat, Manizales 170003, Colombia
[2] Univ Nacl Colombia, Fac Minas, Dept Energia Elect & Automat, Sede Medellin, Carrera 80 65-223, Medellin 050041, Colombia
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 04期
关键词
bifurcation diagrams; numerical validation; periodic orbits; zero average dynamics; control system; CHAOS;
D O I
10.3390/sym14040694
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A boost converter is an electronic circuit that generates a higher voltage in the output than in the input. The most common method to regulate the DC/DC converter is pulse-width modulation (PWM), and some techniques such as sliding mode control help perform a switching frequency to determine the duty cycle. However, some instabilities at different operating points have been detected with the controllers that have not yet been studied. Therefore, this paper presents a numerical validation of the boost converter with bifurcation diagrams. The pulse-width modulation is controlled by using a quasi-sliding mode control technique, such as the zero average dynamics, because it allows for the reduction of some phenomena such as chattering, ripple, and distortions. The results show that N - T periodic orbits are detected with this technique from an initial operating point and they present a qualitative symmetry in both voltage and current variables. This technique is helpful to study a whole range of instability problems resulting from the different power converters and the controllers.
引用
收藏
页数:15
相关论文
共 28 条
[1]   Codimension-Two Big-Bang Bifurcation in a ZAD-Controlled Boost DC-DC Converter [J].
Amador, A. ;
Casanova, S. ;
Granada, H. A. ;
Olivar, G. ;
Hurtado, J. .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (12)
[2]   Two-parameter discontinuity-induced bifurcation curves in a ZAD-strategy-controlled dc-dc buck converter [J].
Angulo, Fabiola ;
Olivar, Gerard ;
di Bernardo, Mario .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2008, 55 (08) :2392-2401
[3]   CHAOTIC MOTION IN NON-LINEAR FEEDBACK-SYSTEMS [J].
BAILLIEUL, J ;
BROCKETT, RW ;
WASHBURN, RB .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1980, 27 (11) :990-997
[4]  
Banerjee S., 2001, NONLINEAR PHENOMENA
[5]  
Bilalaovic F., 1983, P 7THINTERNATIONAL P, P331
[6]  
Buso S, 2015, DIGITAL CONTROL POWE
[7]  
Carpita M., 1988, PESC '88 Record. 19th Annual IEEE Power Electronics Specialists Conference (Cat. No.88CH2523-9), P626, DOI 10.1109/PESC.1988.18189
[8]  
DEANE JHB, 1990, IEEE POWER ELECTRON, P491, DOI 10.1109/PESC.1990.131228
[9]   Switchings, bifurcations, and chaos in DC/DC converters [J].
di Bernardo, M ;
Garofalo, F ;
Glielmo, L ;
Vasca, F .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1998, 45 (02) :133-141
[10]  
Doering C.I., 2016, EQUACOES DIFERENCIAI, P423